Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre
Download foto HD

Sobre

Elsa Silva é investigadora no Centro de Engenharia e Gestão Industrial do INESC TEC e Professora Auxiliar convidada do Departamento de Produção e Sistemas da Universidade do Minho.

É doutorada em Engenharia Industrial e de Sistemas desde 2012 pela Universidade do Minho. Os seus principais interesses de investigação incluem a capacidade de resolver problemas de optimização combinatória difíceis e de grande escala que surgem em várias áreas, tais como problemas de corte e empacotamento e operações de retalho, utilizando abordagens híbridas de programação linear e meta-heurísticas.

As principais contribuições da investigação da Elsa Silva têm sido em problemas de corte e empacotamento (C&P). Algoritmos pioneiros foram desenvolvidos combinando modelos matemáticos, métodos de decomposição e heurísticas para resolver aplicações práticas que até agora não foram estudadas realisticamente. Esta foi uma contribuição importante para o avanço do conhecimento na área dos C&P.

As aplicações práticas abordadas foram: Problema de Alocação de Espaço em Prateleira, Problema de Empacotamento de Tiras na indústria têxtil, Problema de Carregamento de Contentores com estabilidade, limite de peso, balanceamento de carga e restrições de entregas múltiplas. Outra contribuição importante na área de C&P foi o gerador de instâncias para todos os tipos de problemas de C&P retangulares 2D e 3D.

Tópicos
de interesse
Detalhes

Detalhes

004
Publicações

2021

Three-dimensional guillotine cutting problems with constrained patterns: MILP formulations and a bottom-up algorithm

Autores
Martin, M; Oliveira, JF; Silva, E; Morabito, R; Munari, P;

Publicação
Expert Systems with Applications

Abstract

2021

Solving the grocery backroom layout problem

Autores
Pires, M; Silva, E; Amorim, P;

Publicação
International Journal of Production Research

Abstract

2021

The rectangular two-dimensional strip packing problem real-life practical constraints: A bibliometric overview

Autores
Neuenfeldt Júnior A.; Silva E.; Francescatto M.; Rosa C.B.; Siluk J.;

Publicação
Computers and Operations Research

Abstract
Over the years, methods and algorithms have been extensively studied to solve variations of the rectangular two-dimensional strip packing problem (2D-SPP), in which small rectangles must be packed inside a larger object denominated as a strip, while minimizing the space necessary to pack all rectangles. In the rectangular 2D-SPP, constraints are used to restrict the packing process, satisfying physical and real-life practical conditions that can impact the material cutting. The objective of this paper is to present an extensive literature review covering scientific publications about the rectangular 2D-SPP constraints in order to provide a useful foundation to support new research works. A systematic literature review was conducted, and 223 articles were selected and analyzed. Real-life practical constraints concerning the rectangular 2D-SPP were classified into seven different groups. In addition, a bibliometric analysis of the rectangular 2D-SPP academic literature was developed. The most relevant authors, articles, and journals were discussed, and an analysis made concerning the basic constraints (orientation and guillotine cutting) and the main solving methods for the rectangular 2D-SPP. Overall, the present paper indicates opportunities to address real-life practical constraints.

2019

Data mining based framework to assess solution quality for the rectangular 2D strip-packing problem

Autores
Neuenfeldt Junior, A; Silva, E; Gomes, M; Soares, C; Oliveira, JF;

Publicação
Expert Systems with Applications

Abstract
In this paper, we explore the use of reference values (predictors) for the optimal objective function value of hard combinatorial optimization problems, instead of bounds, obtained by data mining techniques, and that may be used to assess the quality of heuristic solutions for the problem. With this purpose, we resort to the rectangular two-dimensional strip-packing problem (2D-SPP), which can be found in many industrial contexts. Mostly this problem is solved by heuristic methods, which provide good solutions. However, heuristic approaches do not guarantee optimality, and lower bounds are generally used to give information on the solution quality, in particular, the area lower bound. But this bound has a severe accuracy problem. Therefore, we propose a data mining-based framework capable of assessing the quality of heuristic solutions for the 2D-SPP. A regression model was fitted by comparing the strip height solutions obtained with the bottom-left-fill heuristic and 19 predictors provided by problem characteristics. Random forest was selected as the data mining technique with the best level of generalisation for the problem, and 30,000 problem instances were generated to represent different 2D-SPP variations found in real-world applications. Height predictions for new problem instances can be found in the regression model fitted. In the computational experimentation, we demonstrate that the data mining-based framework proposed is consistent, opening the doors for its application to finding predictions for other combinatorial optimisation problems, in particular, other cutting and packing problems. However, how to use a reference value instead of a bound, has still a large room for discussion and innovative ideas. Some directions for the use of reference values as a stopping criterion in search algorithms are also provided. © 2018 Elsevier Ltd

2018

A new Load Balance Methodology for Container Loading Problem in Road Transportation

Autores
Ramos, AG; Silva, E; Oliveira, JF;

Publicação
European Journal of Operational Research

Abstract

Teses
supervisionadas

2020

OTIMIZAÇÃO DA ENTREGA DE ENCOMENDAS POR DRONES

Autor
JOÃO PEDRO MOUTINHO ALVES BARBOSA

Instituição
IPP-ISEP

2019

Efficient Heuristics for Two-Dimensional Cutting and Packing Problems

Autor
Óscar António Maia de Oliveira

Instituição
INESCTEC

2019

Conceção e desenvolvimento de um sistema de apoio à decisão para gestão de inventários no retalho

Autor
Edgar Filipe dos Anjos Couto

Instituição
UP-FEUP

2017

The Two-Dimensional Rectangular Strip Packing Problem

Autor
Álvaro Luiz Neuenfeldt Júnior

Instituição
UP-FEUP