Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Tópicos
de interesse
Detalhes

Detalhes

001
Publicações

2023

Ant-Balanced Multiple Traveling Salesmen: ACO-BmTSP

Autores
Pereira, SD; Pires, EJS; Oliveira, PBD;

Publicação
ALGORITHMS

Abstract
A new algorithm based on the ant colony optimization (ACO) method for the multiple traveling salesman problem (mTSP) is presented and defined as ACO-BmTSP. This paper addresses the problem of solving the mTSP while considering several salesmen and keeping both the total travel cost at the minimum and the tours balanced. Eleven different problems with several variants were analyzed to validate the method. The 20 variants considered three to twenty salesmen regarding 11 to 783 cities. The results were compared with best-known solutions (BKSs) in the literature. Computational experiments showed that a total of eight final results were better than those of the BKSs, and the others were quite promising, showing that with few adaptations, it will be possible to obtain better results than those of the BKSs. Although the ACO metaheuristic does not guarantee that the best solution will be found, it is essential in problems with non-deterministic polynomial time complexity resolution or when used as an initial bound solution in an integer programming formulation. Computational experiments on a wide range of benchmark problems within an acceptable time limit showed that compared with four existing algorithms, the proposed algorithm presented better results for several problems than the other algorithms did.

2023

Optimizing wind farm cable layout considering ditch sharing

Autores
Cerveira, A; de Sousa, A; Pires, EJS; Baptista, J;

Publicação
INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH

Abstract
Wind power is becoming an important source of electrical energy production. In an onshore wind farm (WF), the electrical energy is collected at a substation from different wind turbines through electrical cables deployed over ground ditches. This work considers the WF layout design assuming that the substation location and all wind turbine locations are given, and a set of electrical cable types is available. The WF layout problem, taking into account its lifetime and technical constraints, involves selecting the cables to interconnect all wind turbines to the substation and the supporting ditches to minimize the initial investment cost plus the cost of the electrical energy that is lost on the cables over the lifetime of the WF. It is assumed that each ditch can deploy multiple cables, turning this problem into a more complex variant of previously addressed WF layout problems. This variant turns the problem best fitting to the real case and leads to substantial gains in the total cost of the solutions. The problem is defined as an integer linear programming model, which is then strengthened with different sets of valid inequalities. The models are tested with four WFs with up to 115 wind turbines. The computational experiments show that the optimal solutions can be computed with the proposed models for almost all cases. The largest WF was not solved to optimality, but the final relative gaps are small.

2022

Forecasting Student s Dropout: A UTAD University Study

Autores
Da Silva, DEM; Pires, EJS; Reis, A; Oliveira, PBD; Barroso, J;

Publicação
FUTURE INTERNET

Abstract
In Portugal, the dropout rate of university courses is around 29%. Understanding the reasons behind such a high desertion rate can drastically improve the success of students and universities. This work applies existing data mining techniques to predict the academic dropout mainly using the academic grades. Four different machine learning techniques are presented and analyzed. The dataset consists of 331 students who were previously enrolled in the Computer Engineering degree at the Universidade de Tras-os-Montes e Alto Douro (UTAD). The study aims to detect students who may prematurely drop out using existing methods. The most relevant data features were identified using the Permutation Feature Importance technique. In the second phase, several methods to predict the dropouts were applied. Then, each machine learning technique's results were displayed and compared to select the best approach to predict academic dropout. The methods used achieved good results, reaching an Fl-Score of 81% in the final test set, concluding that students' marks somehow incorporate their living conditions.

2022

REVIEW OF ENERGY AUDIT AND BENCHMARKING TOOLS TO STUDY ENERGY EFFICIENCY THROUGH REDUCING CONSUMPTION IN WASTEWATER TREATMENT SYSTEMS

Autores
Esteves, F; Cardoso, JC; Leitao, S; Pires, EJS; Baptista, J;

Publicação
CADERNOS EDUCACAO TECNOLOGIA E SOCIEDADE

Abstract
Wastewater treatment systems are major consumers of electricity being responsible for 3 to 5% of global energy consumption, and 56% of greenhouse gas emissions into the atmosphere in the water treatment sector. Climate change currently imposes the definition of a new pattern of human behavior in the defense and sharing of a common space that is the planet, so the optimization of water treatment models plays a crucial role in the definition of sustainability strategies as part of the challenges for decarbonization by 2050. The physical-chemical characteristics of the influent, the treatment techniques and associated technologies and the unpredictability of external phenomena of inefficiency transform wastewater treatment plants (WWTPs) into complex systems, sometimes difficult to understand. The study of energy efficiency plays an important role in the emergence of a standard behavior model, which allows the correction of unbalanced situations in the expected energy consumption. Given the importance of the topic, the present review aims to study energy auditing techniques and benchmarking tools developed for the wastewater treatment sector to reduce the current electricity consumption, which could represent up to 90% of total energy consumption. The result of the research was organized according to the criteria defined for the characterization of auditing techniques and benchmarking tools. A review was conducted from 51 scientific papers from different reference research platforms published in the last 20 years according to the keywords. This literature review has shown that there are, in the classification of consumption reduction, energy auditing and benchmarking tools; energy management techniques and methods directed to the energy efficiency of the treatment stages and specific equipment; and, finally, decision support tools. According to the methodology followed, it was possible to conclude that although the concern is not recent, there are techniques and tools for assessing energy performance more suitable for the wastewater sector. However, the authors recognize that associated with the complexity of wastewater treatment systems, inefficiency phenomena still strongly impact energy efficiency assessment, so the contributions for their identification and quantification may represent an added value for data analysis, systematization, and optimization methodologies.

2022

A Hybrid Approach GABC-LS to Solve mTSP

Autores
Pereira, SD; Pires, EJS; Oliveira, PBD;

Publicação
OPTIMIZATION, LEARNING ALGORITHMS AND APPLICATIONS, OL2A 2022

Abstract
The Multiple Traveling Salesman Problem (mTSP) is an interesting combinatorial optimization problem due to its numerous real-life applications. It is a problem where m salesmen visit a set of n cities so that each city is visited once. The primary purpose is to minimize the total distance traveled by all salesmen. This paper presents a hybrid approach called GABC-LS that combines an evolutionary algorithm with the swarm intelligence optimization ideas and a local search method. The proposed approach was tested on three instances and produced some better results than the best-known solutions reported in the literature.

Teses
supervisionadas

2022

Classificação de doenças pulmonares obstrutivas crónicas

Autor
Inês de Almeida

Instituição
UTAD

2022

AI-based collaborative robotic system to support physiotherapy interventions

Autor
Cláudia Daniela Costa Rocha

Instituição
UTAD

2022

Técnicas de aprendizagem máquina aplicadas à covid-19

Autor
Milene Sofia Alves Fraga

Instituição
UTAD

2021

Revisão de técnicas de pesquisa inspiradas em enxames

Autor
Daniel da Silva Duarte

Instituição
UTAD

2021

Filogenia mitogenomica de bivalves de água doce (Bivalvia: Unionida)

Autor
João Eduardo Afonso Teiga Teixeira

Instituição