Detalhes
Nome
Diogo Miguel MatosDesde
16 setembro 2020
Nacionalidade
PortugalCentro
Robótica Industrial e Sistemas InteligentesContactos
+351220413317
diogo.m.matos@inesctec.pt
2025
Autores
Rema C.; Santos R.; Piqueiro H.; Matos D.M.; Oliveirat P.M.; Costa P.; Silva M.F.;
Publicação
2025 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC
Abstract
Industry 4.0 is transforming manufacturing environments, with robotics being a key technology that enhances various capabilities. The flexibility of Autonomous Mobile Robots has led to the rise of multi-robot systems in industrial settings. Considering the high cost of these robots, it is essential to determine the best fit of number and type before making any major investments. Simulation and modeling are valuable decision-support tools, allowing the simulation of different setups to address robot fleet sizing issues. This paper introduces a decision-support framework that combines a fleet manager software stack with the FlexSim simulator, helping decision-makers determine the most suitable mobile robots fleet size tailored to their needs. Unlike previous approaches, the developed solution integrates the same real robot coordination software in both simulation and actual deployment, ensuring that tested scenarios accurately reflect real-world conditions. A case study was conducted to evaluate the framework, involving multiple tasks of loading and unloading materials within a warehouse. Five different scenarios with varying fleet sizes were simulated, and their performances assessed. The analysis concluded that, for the case study under consideration, a fleet of three robots was the most suitable, considering relevant key performance indicators. The results confirmed that the developed solution is an effective alternative for addressing the problem and represents a novel technology with no prior state-of-the-art equivalents.
2025
Autores
Ribeiro, J; Brilhante, M; Matos, DM; Silva, CA; Sobreira, H; Costa, P;
Publicação
2025 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC
Abstract
Multi-robot coordination aims to synchronize robots for optimized, collision-free paths in shared environments, addressing task allocation, collision avoidance, and path planning challenges. The Time Enhanced A* (TEA*) algorithm addresses multi-robot pathfinding offering a centralized and sequential approach. However, its sequential nature can lead to order-dependent variability in solutions. This study enhances TEA* through multi-threading, using thread pooling and parallelization techniques via OpenMP, and a sensitivity analysis enabling parallel exploration of robot-solving orders to improve robustness and the likelihood of finding efficient, feasible paths in complex environments. The results show that this approach improved coordination efficiency, reducing replanning needs and simulation time. Additionally, the sensitivity analysis assesses TEA*'s scalability across various graph sizes and number of robots, providing insights into how these factors influence the efficiency and performance of the algorithm.
2025
Autores
Matos, DM; Costa, P; Sobreira, H; Valente, A; Lima, J;
Publicação
INTERNATIONAL JOURNAL OF INTELLIGENT ROBOTICS AND APPLICATIONS
Abstract
With the increasing adoption of mobile robots for transporting components across several locations in industries, congestion problems appear if the movement of these robots is not correctly planned. This paper introduces a fleet management system where a central agent coordinates, plans, and supervises the fleet, mitigating the risk of deadlocks and addressing issues related to delays, deviations between the planned paths and reality, and delays in communication. The system uses the TEA* graph-based path planning algorithm to plan the paths of each agent. In conjunction with the TEA* algorithm, the concepts of supervision and graph-based environment representation are introduced. The system is based on ROS framework and allows each robot to maintain its autonomy, particularly in control and localization, while aligning its path with the plan from the central agent. The effectiveness of the proposed fleet manager is demonstrated in a real scenario where robots operate on a shop floor, showing its successful implementation.
2024
Autores
Silva, RT; Brilhante, M; Sobreira, H; Matos, D; Costa, P;
Publicação
2024 7TH IBERIAN ROBOTICS CONFERENCE, ROBOT 2024
Abstract
Autonomous Mobile Robots (AMRs) and Automated Guided Vehicles (AGVs) have emerged as key innovations in the industry world, with AMRs offering flexibility a nd adaptability for dynamic environments, while AGVs provide high accuracy for repetitive tasks; thus, this research proposes a study of fleets of both AGVs and AMRs to enhance productivity and efficiency in industrial settings. Several tests were performed where the duration of a mission, the success and collision rate, and the average number of disputes per mission were analyzed in order to obtain results. In conclusion, while AGVs tend to be more reliable and consistent in task completion, AMRs offer greater flexibility a nd speed.
2023
Autores
Pereira, D; Matos, D; Rebelo, P; Ribeiro, F; Costa, P; Lima, J;
Publicação
ROBOT2022: FIFTH IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, VOL 2
Abstract
There is an increasing need for autonomous mobile robots (AMRs) in industrial environments. The capability of autonomous movement and transportation of items in industrial environments provides a significant increase in productivity and efficiency. This need, coupled with the possibility of controlling groups of heterogeneous robots, simultaneously addresses a wide range of tasks with different characteristics in the same environment, further increasing productivity and efficiency. This paper will present an implementation of a system capable of coordinating a fleet of heterogeneous robots with robustness. The implemented system must be able to plan a safe and efficient path for these different robots. To achieve this task, the TEA* (Time Enhanced A*) graph search algorithm will be used to coordinate the paths of the robots, along with a graph decomposition module that will be used to improve the efficiency and safety of this system. The project was implemented using the ROS framework and the Stage simulator. Results validate the proposed approach since the system was able to coordinate a fleet of robots in various different tests efficiently and safely, given the heterogeneity of the robots.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.