Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre

Sobre

Engenheiro Eletricista com Mestrado em Sistemas de Energia pelo Instituto Superior de Engenharia do Politécnico do Porto, Portugal, e Bacharelado em Engenharia Elétrica pelo Instituto Federal de Santa Catarina, Brasil. Com experiência em sistemas de energia, desenvolvimento de produtos e soluções eletrotécnicas.


Suas habilidades abrangem projetos de instalações elétricas, soluções em energias renováveis e métodos numéricos para de sistemas de energia.


Apaixonado por conectar a academia à indústria, aprimorando constantemente suas habilidades por meio de pesquisa e aplicação prática.


Principais interesses: sistemas de energia, projetos elétricos, hidrogênio verde, mobilidade elétrica e otimização.

Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Diego Bairrão
  • Cargo

    Investigador
  • Desde

    08 agosto 2024
001
Publicações

2024

Improving Load Forecasting with Data Partitioning: A K-Means Approach to An Office Building

Autores
Bairrao, D; Ramos, D; Faria, P; Vale, Z;

Publicação
IFAC PAPERSONLINE

Abstract
In recent years, the energy landscape has undergone significant transformations, characterized by the integration of renewable energy sources, smart grids, and the proliferation of IoT-enabled devices. As a result, the efficient management of energy resources has become paramount, requiring advanced methodologies in load forecasting and clustering. This article presents an enhanced methodology for short-term load forecasting that focuses on load consumption profile recognition within a smart building environment. The methodology is designed to analyze and identify recurring load consumption profiles and measures of sensors, thereby enhancing load consumption profile recognition capabilities within the smart building context. The interaction between single and grouped datasets is explored to enhance the accuracy and interpretability of predictions, contributing to optimized energy consumption and providing valuable information for demand response programs. The default forecasting methods used in the methodology are artificial neural networks and k-nearest neighbors. For comparing results and evaluating the proposed approach, XGBoost is also employed. The dataset is selected from a specific database, and the clustering method, partitioning type, is applied with k-means. The results, validated with error evaluation models and statistics, reveal the advantages of the proposed approach, especially with three clusters, where the results achieved by the Artificial Neural Network are the best. The clustering process, particularly the partitioning type, demonstrates a strong capability in improving load forecasting in smart buildings and helps understand load consumption patterns and achieve energy savings. Copyright (C) 2024 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)