Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre
Download foto HD

Sobre

Sou Professora Associada no Departamento de Engenharia Informática da FEUP, Universidade do Porto, e investigadora senior do INESC TEC. Colaborei e fui responsável por projetos nas áreas do património cultural, bases de dados multimédia, recuperação de informação e otimização combinatória. Supervisionei 9 dissertações de doutoramento e 33 de mestrado. Fui responsável técnica do laboratório SAPO/U.Porto durante 5 anos. A minha atividade de ensino desenvolve-se na Engenharia Informática e na Ciência da Informação. A gestão de dados de investigação está no centro da minha atividade de investigação atual. Sou investigadora principal do projeto TAIL (FCT/POCI), que desenvolve ferramentas e métodos para a publicação de dados de investigação e responsável pelo piloto DataPublication@U.Porto da iniciativa europeia EUDAT. Sou membro do Grupo de Trabalho para a Política Nacional da Ciência Aberta da SECTES. Os meus interesses de investigação incluem a recuperação de informação, a preservação digital e a representação de conhecimento.

Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Cristina Ribeiro
  • Cluster

    Informática
  • Cargo

    Investigador Sénior
  • Desde

    01 abril 1985
007
Publicações

2021

Evaluating the Quality of an Online Course in Information Literacy Applied to Engineering Students

Autores
Oliveira Ramos, T; Morais, C; Ribeiro, C;

Publicação
Handbook of Research on Determining the Reliability of Online Assessment and Distance Learning - Advances in Mobile and Distance Learning

Abstract
An academic library created an online course in information literacy skills in 2007 for engineering students. This chapter reports the evaluation of the course's effectiveness in developing those skills. In the academic year 2015/2016, a case study with a mixed-methods approach was applied to 5th-year students (N=91) enrolled in a course unit for Master Dissertation's preparation in the informatics and computing engineering programme. Students showed high confidence in their information literacy skills. Online assignments' performance was good, but activities revealed quality issues. Performance in the course unit's assignments reveals a poor application of acquired skills. But satisfaction is high: students value independent learning and online access to resources and content. Despite evidence of some positive impact, the course lacks effectiveness due to issues in the course unit's assignments. Needed improvements include a better realignment with students' needs and a redesign with an instructional model to assure the promotion of students' success.

2021

Institutional Support for Data Management Plans: Five Case Studies

Autores
Karimova, Y; Ribeiro, C; David, G;

Publicação
Metadata and Semantic Research - Communications in Computer and Information Science

Abstract

2020

ArchOnto, a CIDOC-CRM-Based Linked Data Model for the Portuguese Archives

Autores
Koch, I; Ribeiro, C; Lopes, CT;

Publicação
Digital Libraries for Open Knowledge - Lecture Notes in Computer Science

Abstract

2019

Data Deposit in a CKAN Repository: A Dublin Core-Based Simplified Workflow

Autores
Karimova, Y; Castro, JA; Ribeiro, C;

Publicação
Communications in Computer and Information Science - Digital Libraries: Supporting Open Science

Abstract

2019

Interplay of Documents' Readability, Comprehension and Consumer Health Search Performance Across Query Terminology

Autores
Lopes, CT; Ribeiro, C;

Publicação
Proceedings of the 2019 Conference on Human Information Interaction and Retrieval, CHIIR 2019, Glasgow, Scotland, UK, March 10-14, 2019

Abstract
Because of terminology mismatches, health consumers frequently face difficulties while searching the Web for health information. Difficulties arise in query formulation but also in understanding the retrieved documents. In this work we analyze how documents' readability affects users' comprehension and how both affect the retrieval performance, measured in different ways. In addition, we analyze how performance measures relate with each other. For this purpose we have conducted a laboratory user study with 40 participants. We found that readability is essential for a document to be at least partially relevant and that it becomes even more important if the document has medico-scientific terminology. Moreover, the relevance of a document to a specific user highly depends on its comprehension. In lay queries we found the medical accuracy of users' answers is related to the session's relevance assessments. This shows that users can, at least in part, relate their relevance assessments with the medical accuracy of the documents. On the other hand, this relationship does not exist with medico-scientific queries. © 2019 Copyright held by the owner/author(s). Publication rights licensed to Association for Computing Machinery.

Teses
supervisionadas

2020

Engaging researchers in research data management: creating metadata models for multi-domain dataset description

Autor
João Daniel Aguiar de Castro

Instituição
UP-FEUP

2020

Aplicação das recomendações da Research Data Alliance em grupos de investigação portugueses

Autor
Jéssica Alexandra Lopes Barbosa

Instituição
UP-FEUP

2020

Plano de gestão de dados para a produção de dados FAIR: O caso de uso FRAILSURVEY

Autor
André Filipe da Costa Maciel

Instituição
UP-FEUP

2019

Application of the LabTablet app in a laboratory environment: Case study I3S

Autor
Ana Luís da Costa Ferreira

Instituição
UP-FEUP

2019

DendroShare: Partilha e citação de conjuntos de dados de investigação

Autor
Lázaro Gabriel Barros da Costa

Instituição
UP-FEUP