Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre

Sobre

Tenho licenciatura em matemática (FCUP), mestrado em matemática aplicada (FCUP) e doutoramento em matemática aplicada (em conjunto pelas Universidades do Porto, Minho e Aveiro). Trabalho em previsão de energias renováveis, com foco em previsões probabílisticas, privacidade de dados e mercado de dados.

Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Carla Silva Gonçalves
  • Cluster

    Energia
  • Cargo

    Investigador Auxiliar
  • Desde

    12 outubro 2015
003
Publicações

2022

Conditional parametric model for sensitivity factors in LV grids: A privacy-preserving approach

Autores
Sampaio, G; Bessa, RJ; Goncalves, C; Gouveia, C;

Publicação
ELECTRIC POWER SYSTEMS RESEARCH

Abstract
The deployment of smart metering technologies in the low voltage (LV) grid created conditions for the application of data-driven monitoring and control functions. However, data privacy regulation and consumers’ aversion to data sharing may compromise data exchange between utility and customers. This work presents a data-driven method, based on smart meter data, to estimate linear sensitivity factors for three-phase unbalanced LV grids, which combines a privacy-preserving protocol and varying coefficients linear regression. The proposed method enables centralized and peer-to-peer learning of the sensitivity factors. Potential applications for the sensitivity factors are demonstrated by solving voltage violations or computing operating envelopes in a LV grid without resorting to its network topology or electrical parameters. © 2022 Elsevier B.V.

2022

A Blockchain-based Data Market for Renewable Energy Forecasts

Autores
Coelho, F; Silva, F; Goncalves, C; Bessa, R; Alonso, A;

Publicação
2022 FOURTH INTERNATIONAL CONFERENCE ON BLOCKCHAIN COMPUTING AND APPLICATIONS (BCCA)

Abstract

2021

Towards Data Markets in Renewable Energy Forecasting

Autores
Goncalves, C; Pinson, P; Bessa, RJ;

Publicação
IEEE TRANSACTIONS ON SUSTAINABLE ENERGY

Abstract

2021

A critical overview of privacy-preserving approaches for collaborative forecasting

Autores
Goncalves, C; Bessa, RJ; Pinson, P;

Publicação
INTERNATIONAL JOURNAL OF FORECASTING

Abstract
Cooperation between different data owners may lead to an improvement in forecast quality—for instance, by benefiting from spatiotemporal dependencies in geographically distributed time series. Due to business competitive factors and personal data protection concerns, however, said data owners might be unwilling to share their data. Interest in collaborative privacy-preserving forecasting is thus increasing. This paper analyzes the state-of-the-art and unveils several shortcomings of existing methods in guaranteeing data privacy when employing vector autoregressive models. The methods are divided into three groups: data transformation, secure multi-party computations, and decomposition methods. The analysis shows that state-of-the-art techniques have limitations in preserving data privacy, such as (i) the necessary trade-off between privacy and forecasting accuracy, empirically evaluated through simulations and real-world experiments based on solar data; and (ii) iterative model fitting processes, which reveal data after a number of iterations. © 2020 International Institute of Forecasters

2021

Forecasting conditional extreme quantiles for wind energy

Autores
Goncalves, C; Cavalcante, L; Brito, M; Bessa, RJ; Gama, J;

Publicação
ELECTRIC POWER SYSTEMS RESEARCH

Abstract
Probabilistic forecasting of distribution tails (i.e., quantiles below 0.05 and above 0.95) is challenging for non-parametric approaches since data for extreme events are scarce. A poor forecast of extreme quantiles can have a high impact in various power system decision-aid problems. An alternative approach more robust to data sparsity is extreme value theory (EVT), which uses parametric functions for modelling distribution's tails. In this work, we apply conditional EVT estimators to historical data by directly combining gradient boosting trees with a truncated generalized Pareto distribution. The parametric function parameters are conditioned by covariates such as wind speed or direction from a numerical weather predictions grid. The results for a wind power plant located in Galicia, Spain, show that the proposed method outperforms state-of-the-art methods in terms of quantile score. © 2020 Elsevier B.V.