Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Tópicos
de interesse
Detalhes

Detalhes

002
Publicações

2021

Autonomous wheelchair for patient’s transportation on healthcare institutions

Autores
Baltazar, AR; Petry, MR; Silva, MF; Moreira, AP;

Publicação
SN Applied Sciences

Abstract
AbstractThe transport of patients from the inpatient service to the operating room is a recurrent task in a hospital routine. This task is repetitive, non-ergonomic, time consuming, and requires the labor of patient transporters. In this paper is presented a system, named Connected Driverless Wheelchair, that can receive transportation requests directly from the hospital information management system, pick up patients at their beds, navigate autonomously through different floors, avoid obstacles, communicate with elevators, and drop patients off at the designated operating room. As a result, a prototype capable of transporting patients autonomously in hospital environments was obtained. Although it was impossible to test the final developed system at the hospital as planned, due to the COVID-19 pandemic, the extensive tests conducted at the robotics laboratory facilities, and our previous experience in integrating mobile robots in hospitals, allowed to conclude that it is perfectly prepared for this integration to be carried out. The achieved results are relevant since this is a system that may be applied to support these types of tasks in the future, making the transport of patients more efficient (both from a cost and time perspective), without unpredictable delays and, in some cases, safer.

2021

Smarter robotic sprayer system for precision agriculture

Autores
Baltazar, AR; dos Santos, FN; Moreira, AP; Valente, A; Cunha, JB;

Publicação
Electronics (Switzerland)

Abstract
The automation of agricultural processes is expected to positively impact the environment by reducing waste and increasing food security, maximising resource use. Precision spraying is a method used to reduce the losses during pesticides application, reducing chemical residues in the soil. In this work, we developed a smart and novel electric sprayer that can be assembled on a robot. The sprayer has a crop perception system that calculates the leaf density based on a support vector machine (SVM) classifier using image histograms (local binary pattern (LBP), vegetation index, average, and hue). This density can then be used as a reference value to feed a controller that determines the air flow, the water rate, and the water density of the sprayer. This perception system was developed and tested with a created dataset available to the scientific community and represents a significant contribution. The results of the leaf density classifier show an accuracy score that varies between 80% and 85%. The conducted tests prove that the solution has the potential to increase the spraying accuracy and precision.

2020

Driverless Wheelchair for Patient's On-Demand Transportation in Hospital Environment*

Autores
Baltazar, A; Petry, MR; Silva, MF; Moreira, AP;

Publicação
2020 IEEE International Conference on Autonomous Robot Systems and Competitions, ICARSC 2020, Ponta Delgada, Portugal, April 15-17, 2020

Abstract
The transport of patients from the inpatient service to the operating room is a recurrent task in the hospital routine. This task is repetitive, non-ergonomic, time consuming, and requires the labor of patient transporters. In this paper is presented the design of a driverless wheelchair under development capable of providing an on-demand mobility service to hospitals. The proposed wheelchair can receive transportation requests directly from the hospital information management system, pick-up patients at their beds, navigate autonomously through different floors, avoid obstacles, communicate with elevators, and drop patients off at the designated destination. © 2020 IEEE.