Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    André Melim
  • Cargo

    Investigador
  • Desde

    28 março 2022
003
Publicações

2024

Novel adaptive protection approach for optimal coordination of directional overcurrent relays

Autores
Reiz, C; Alves, E; Melim, A; Gouveia, C; Carrapatoso, A;

Publicação
2024 IEEE 22ND MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, MELECON 2024

Abstract
The integration of inverter-based distributed generation challenges the implementation of an reliable protection This work proposes an adaptive protection method for coordinating protection systems using directional overcurrent relays, where the settings depend on the distribution network operating conditions. The coordination problem is addressed through a specialized genetic algorithm, aiming to minimize the total operating times of relays with time-delayed operation. The pickup current is also optimized. Coordination diagrams from diverse fault scenarios illustrate the method's adaptability to different operational conditions, emphasizing the importance of employing multiple setting groups for optimal protection system performance. The proposed technique provides high-quality solutions, enhancing reliability compared to traditional protection schemes.

2024

Enhancing Power Distribution Protection: A Comprehensive Analysis of Renewable Energy Integration Challenges and Mitigation Strategies

Autores
Alves, E; Reiz, C; Melim, A; Gouveia, C;

Publicação
IET Conference Proceedings

Abstract
The integration of Distributed Energy Resources (DER) imposes challenges to the operation of distribution networks. This paper conducts a systematic assessment of the impact of DER on distribution network overcurrent protection, considering the behavior of Inverter Based Resources (IBR) during faults in the coordination of medium voltage (MV) feeders' overcurrent protection. Through a detailed analysis of various scenarios, we propose adaptive protection solutions that enhance the reliability and resilience of distribution networks in the face of growing renewable energy integration. Results highlight the advantages of using adaptive protection over traditional methods and topology changes, and delve into current protection strategies, identifying limitations and proposing mitigation strategies. © The Institution of Engineering & Technology 2024.