Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Miguel Lopes Martins
  • Cargo

    Assistente de Investigação
  • Desde

    15 fevereiro 2020
  • Nacionalidade

    Portugal
  • Contactos

    +351222094000
    miguel.l.martins@inesctec.pt
001
Publicações

2023

Markov-Based Neural Networks for Heart Sound Segmentation: Using Domain Knowledge in a Principled Way

Autores
Martins, ML; Coimbra, MT; Renna, F;

Publicação
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS

Abstract
This work considers the problem of segmenting heart sounds into their fundamental components. We unify statistical and data-driven solutions by introducing Markov-based Neural Networks (MNNs), a hybrid end-to-end framework that exploits Markov models as statistical inductive biases for an Artificial Neural Network (ANN) discriminator. We show that an MNN leveraging a simple one-dimensional Convolutional ANN significantly outperforms two recent purely data-driven solutions for this task in two publicly available datasets: PhysioNet 2016 (Sensitivity: 0.947 +/- 0.02; Positive Predictive Value : 0.937 +/- 0.025) and the CirCor DigiScope 2022 (Sensitivity: 0.950 +/- 0.008; Positive Predictive Value: 0.943 +/- 0.012). We also propose a novel gradient-based unsupervised learning algorithm that effectively makes the MNN adaptive to unseen datum sampled from unknown distributions. We perform a cross dataset analysis and show that an MNN pre-trained in the CirCor DigiScope 2022 can benefit from an average improvement of 3.90% Positive Predictive Value on unseen observations from the PhysioNet 2016 dataset using this method.

2023

Fractal Bilinear Deep Neural Network Models for Gastric Intestinal Metaplasia Detection

Autores
Pedroso, M; Martins, ML; Libânio, D; Dinis-Ribeiro, M; Coimbra, M; Renna, F;

Publicação
2023 IEEE EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS, BHI

Abstract
Gastric Intestinal Metaplasia (GIM) is a precancerous gastric lesion and its early detection facilitates patient followup, thus lowering significantly the risk of death by gastric cancer. However, effective screening of this condition is a very challenging task, resulting low intra and inter-observer concordance. Computer assisted diagnosis systems leveraging deep neural networks (DNNs) have emerged as a way to mitigate these ailments. Notwithstanding, these approaches typically require large datasets in order to learn invariance to the extreme variations typically present in Esophagogastroduodenoscopy (EGD) still frames, such as perspective, illumination, and scale. Hence, we propose to combine a priori information regarding texture characteristics of GIM with data-driven DNN solutions. In particular, we define two different models that treat pre-trained DNNs as general features extractors, whose pairwise interactions with a collection of highly invariant local texture descriptors grounded on fractal geometry are computed by means of an outer product in the embedding space. Our experiments show that these models outperform a baseline DNN by a significant margin over several metrics (e.g., area under the curve (AUC) 0.792 vs. 0.705) in a dataset comprised of EGD narrow-band images. Our best model measures double the positive likelihood ratio when compared to a baseline GIM detector.

2022

Artificial Intelligence for Upper Gastrointestinal Endoscopy: A Roadmap from Technology Development to Clinical Practice

Autores
Renna, F; Martins, M; Neto, A; Cunha, A; Libanio, D; Dinis-Ribeiro, M; Coimbra, M;

Publicação
DIAGNOSTICS

Abstract
Stomach cancer is the third deadliest type of cancer in the world (0.86 million deaths in 2017). In 2035, a 20% increase will be observed both in incidence and mortality due to demographic effects if no interventions are foreseen. Upper GI endoscopy (UGIE) plays a paramount role in early diagnosis and, therefore, improved survival rates. On the other hand, human and technical factors can contribute to misdiagnosis while performing UGIE. In this scenario, artificial intelligence (AI) has recently shown its potential in compensating for the pitfalls of UGIE, by leveraging deep learning architectures able to efficiently recognize endoscopic patterns from UGIE video data. This work presents a review of the current state-of-the-art algorithms in the application of AI to gastroscopy. It focuses specifically on the threefold tasks of assuring exam completeness (i.e., detecting the presence of blind spots) and assisting in the detection and characterization of clinical findings, both gastric precancerous conditions and neoplastic lesion changes. Early and promising results have already been obtained using well-known deep learning architectures for computer vision, but many algorithmic challenges remain in achieving the vision of AI-assisted UGIE. Future challenges in the roadmap for the effective integration of AI tools within the UGIE clinical practice are discussed, namely the adoption of more robust deep learning architectures and methods able to embed domain knowledge into image/video classifiers as well as the availability of large, annotated datasets.

2021

Joint Training of Hidden Markov Model and Neural Network for Heart Sound Segmentation

Autores
Renna, F; Martins, ML; Coimbra, M;

Publicação
2021 COMPUTING IN CARDIOLOGY (CINC)

Abstract
In this work, we propose a novel algorithm for heart sound segmentation. The proposed approach is based on the combination of two families of state-of-the-art solutions for such problem, hidden Markov models and deep neural networks, in a single training framework. The proposed approach is tested with heart sounds from the PhysioNet dataset and it is shown to achieve an average sensitivity of 93.9% and an average positive predictive value of 94.2% in detecting the boundaries of fundamental heart sounds.