Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Duarte Carvalho
  • Cargo

    Investigador Auxiliar
  • Desde

    15 abril 2024
Publicações

2024

Multi-Parametric Decision System for Analytical Performance Assessment of Electrochemical (Bio)Sensors

Autores
Moreira, DC; Carvalho, DN; Santos, EC; Relvas, JB; Neves, MAD; Pinto, IM;

Publicação
ADVANCED MATERIALS TECHNOLOGIES

Abstract
Miniaturized three-electrode electrochemical sensors (MES) are widely used in the advancement of innovative technologies for remote sensing applications. MESs consist of conductive electrodes that are applied onto an inert solid substrate using various techniques, such as photolithography, electroplating, and screen printing. Typical MES systems comprise working (WE) and counter (CE) electrodes based on gold (Au), paired with a reference electrode (RE) based on silver (Ag). This configuration is commonly selected due to Au's high conductivity, low resistance, and compatibility with robust organothiol chemistries, especially for the WE. Moreover, Ag is often preferred for REs owing to its low toxicity, stability, and high conductivity. Nevertheless, in uncontrolled environments outside of cleanrooms, both Au and Ag surfaces are prone to atmospheric contamination, resulting in significant sensor variability and compromised analytical performance. Therefore, it is crucial to integrate a pre-processing stage into the sensor manufacturing process to guarantee the quality and cleanliness of MES electrode surfaces for sensor functionalization and precise electrochemical measurements. Considering the potential negative effects of methods tailored for a specific electrode material on another material, this study extensively investigates 18 different treatment methods for MESs incorporating Au CEs and WEs, along with Ag REs. Employing a multi-parametric analysis, this study aims to identify the most effective treatment for a variety of electrode materials, thereby improving analytical accuracy and reproducibility for subsequent MES (bio)sensor applications. Miniaturized three-electrode electrochemical sensors (MES) are essential for advancing remote sensing technologies. However, the inherent morpho-chemical heterogeneity of built-in electrodes challenges MES analytical performance. This study investigates treatments for the different electrode materials, providing new methods to enhance quality control, analytical accuracy, and reproducibility in MES biosensing applications. image

2023

Marine collagen-chitosan-fucoidan/chondroitin sulfate cryo-biomaterials loaded with primary human cells envisaging cartilage tissue engineering

Autores
Carvalho, DN; Gelinsky, M; Williams, DS; Mearns Spragg, A; Reis, RL; Silva, TH;

Publicação
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES

Abstract
Cartilage repair after a trauma or a degenerative disease like osteoarthritis (OA) continues to be a big challenge in current medicine due to the limited self-regenerative capacity of the articular cartilage tissues. To overcome the current limitations, tissue engineering and regenerative medicine (TERM) and adjacent areas have focused their efforts on new therapeutical procedures and materials capable of restoring normal tissue functionalities through polymeric scaffolding and stem cell engineering approaches. For this, the sustainable exploration of marine origin materials has emerged in the last years as a natural alternative to mammal sources, benefiting from their biological properties (e.g., biocompatibility, biodegradability, no toxicity, among others) for the develop-ment of several types of scaffolds. In this study, marine collagen(jCOL)-chitosan(sCHT)-fucoidan(aFUC)/ chondroitin sulfate(aCS) were cryo-processed (-20 degrees C,-80 degrees C, and-196 degrees C) and a chemical-free cross -linking approach was explored to establish cohesive and stable cryogel materials. The cryogels were intensively characterized to assess their oscillatory behavior, thermal structural stability, thixotropic properties (around 45 % for the best formulations), injectability, and surface structural organization. Additionally, the cryogels demonstrate an interesting microenvironment in in vitro studies using human adipose-derived stem cells (hASCs), supporting their viability and proliferation. In both physic-chemical and in vitro studies, the systems that contain fucoidan in their formulations, i.e., C1 (jCOL, sCHT, aFUC) and C3 (jCOL, sCHT, aFUC, aCS), submitted at-80 degrees C, are those that demonstrated most promising results for future application in articular cartilage tissues.

2023

Assessing non-synthetic crosslinkers in biomaterial inks based on polymers of marine origin to increase the shape fidelity in 3D extrusion printing

Autores
Carvalho, DN; Dani, S; Sotelo, CG; Perez Martin, RI; Reis, RL; Silva, TH; Gelinsky, M;

Publicação
BIOMEDICAL MATERIALS

Abstract
In the past decade, there has been significant progress in 3D printing research for tissue engineering (TE) using biomaterial inks made from natural and synthetic compounds. These constructs can aid in the regeneration process after tissue loss or injury, but achieving high shape fidelity is a challenge as it affects the construct's physical and biological performance with cells. In parallel with the growth of 3D bioprinting approaches, some marine-origin polymers have been studied due to their biocompatibility, biodegradability, low immunogenicity, and similarities to human extracellular matrix components, making them an excellent alternative to land mammal-origin polymers with reduced disease transmission risk and ethical concerns. In this research, collagen from shark skin, chitosan from squid pens, and fucoidan from brown algae were effectively blended for the manufacturing of an adequate biomaterial ink to achieve a printable, reproducible material with a high shape fidelity and reticulated using four different approaches (phosphate-buffered saline, cell culture medium, 6% CaCl2, and 5 mM Genipin). Materials characterization was composed by filament collapse, fusion behavior, swelling behavior, and rheological and compressive tests, which demonstrated favorable shape fidelity resulting in a stable structure without deformations, and interesting shear recovery properties around the 80% mark. Additionally, live/dead assays were conducted in order to assess the cell viability of an immortalized human mesenchymal stem cell line, seeded directly on the 3D printed constructs, which showed over 90% viable cells. Overall, the Roswell Park Memorial Institute cell culture medium promoted the adequate crosslinking of this biopolymer blend to serve the TE approach, taking advantage of its capacity to hamper pH decrease coming from the acidic biomaterial ink. While the crosslinking occurs, the pH can be easily monitored by the presence of the indicator phenol red in the cell culture medium, which reduces costs and time.

2023

Advanced Polymeric Membranes as Biomaterials Based on Marine Sources Envisaging the Regeneration of Human Tissues

Autores
Carvalho, DN; Lobo, FCM; Rodrigues, LC; Fernandes, EM; Williams, DS; Mearns Spragg, A; Sotelo, CG; Perez Martin, RI; Reis, RL; Gelinsky, M; Silva, TH;

Publicação
GELS

Abstract
The self-repair capacity of human tissue is limited, motivating the arising of tissue engineering (TE) in building temporary scaffolds that envisage the regeneration of human tissues, including articular cartilage. However, despite the large number of preclinical data available, current therapies are not yet capable of fully restoring the entire healthy structure and function on this tissue when significantly damaged. For this reason, new biomaterial approaches are needed, and the present work proposes the development and characterization of innovative polymeric membranes formed by blending marine origin polymers, in a chemical free cross-linking approach, as biomaterials for tissue regeneration. The results confirmed the production of polyelectrolyte complexes molded as membranes, with structural stability resulting from natural intermolecular interactions between the marine biopolymers collagen, chitosan and fucoidan. Furthermore, the polymeric membranes presented adequate swelling ability without compromising cohesiveness (between 300 and 600%), appropriate surface properties, revealing mechanical properties similar to native articular cartilage. From the different formulations studied, the ones performing better were the ones produced with 3 % shark collagen, 3% chitosan and 10% fucoidan, as well as with 5% jellyfish collagen, 3% shark collagen, 3% chitosan and 10% fucoidan. Overall, the novel marine polymeric membranes demonstrated to have promising chemical, and physical properties for tissue engineering approaches, namely as thin biomaterial that can be applied over the damaged articular cartilage aiming its regeneration.

2022

A Design of Experiments (DoE) Approach to Optimize Cryogel Manufacturing for Tissue Engineering Applications

Autores
Carvalho, DN; Goncalves, C; Oliveira, JM; Williams, DS; Mearns-Spragg, A; Reis, RL; Silva, TH;

Publicação
POLYMERS

Abstract
Marine origin polymers represent a sustainable and natural alternative to mammal counterparts regarding the biomedical application due to their similarities with proteins and polysaccharides present in extracellular matrix (ECM) in humans and can reduce the risks associated with zoonosis and overcoming social- and religious-related constraints. In particular, collagen-based biomaterials have been widely explored in tissue engineering scaffolding applications, where cryogels are of particular interest as low temperature avoids protein denaturation. However, little is known about the influence of the parameters regarding their behavior, i.e., how they can influence each other toward improving their physical and chemical properties. Factorial design of experiments (DoE) and response surface methodology (RSM) emerge as tools to overcome these difficulties, which are statistical tools to find the most influential parameter and optimize processes. In this work, we hypothesized that a design of experiments (DoE) model would be able to support the optimization of the collagen-chitosan-fucoidan cryogel manufacturing. Therefore, the parameters temperature (A), collagen concentration (B), and fucoidan concentration (C) were carefully considered to be applied to the Box-Behnken design (three factors and three levels). Data obtained on rheological oscillatory measurements, as well as on the evaluation of antioxidant concentration and adenosine triphosphate (ATP) concentration, showed that fucoidan concentration could significantly influence collagen-chitosan-fucoidan cryogel formation, creating a stable internal polymeric network promoted by ionic crosslinking bonds. Additionally, the effect of temperature significantly contributed to rheological oscillatory properties. Overall, the condition that allowed us to have better results, from an optimization point of view according to the DoE, were the gels produced at -80 degrees C and composed of 5% of collagen, 3% of chitosan, and 10% fucoidan. Therefore, the proposed DoE model was considered suitable for predicting the best parameter combinations needed to develop these cryogels.