Detalhes
Nome
Argentina LeiteCargo
Investigador Colaborador ExternoDesde
01 janeiro 2014
Nacionalidade
PortugalContactos
+351222094106
argentina.leite@inesctec.pt
2023
Autores
Cruz, C; Leite, A; Pires, EJS; Pereira, LT;
Publicação
Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST
Abstract
Myocardial infarction, known as heart attack, is one of the leading causes of world death. It occurs when blood heart flow is interrupted by part of coronary artery occlusion, causing the ischemic episode to last longer, creating a change in the patient’s ECG. In this work, a method was developed for predicting patients with MI through Frank 3-lead ECG extracted from Physionet’s PTB ECG Diagnostic Database and using instantaneous frequency and spectral entropy to extract features. Two neural networks were applied: Long Short-Term Memory and Bi-Long Short-Term Memory, obtaining a better result with the first one, with an accuracy of 78%. © 2023, ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering.
2022
Autores
Cerqueira, S; Campelos, MR; Leite, A; Pires, EJS; Pereira, LT; Diniz, H; Sampaio, S; Figueiredo, A; Alve, R;
Publicação
REVISTA DE NEFROLOGIA DIALISIS Y TRASPLANTE
Abstract
Background: The gap between offer and need for a kidney transplant (KT) has been increasing. The Kidney Donor Profile Index (KDPI) is a measure of organ quality and allows estimation of graft survival, but could not apply to all populations. Knowledge of our kidney donor and recipient population is vital to adjust transplant strategies. Methods: We performed a retrospective evaluation of donors and recipients of KT regarding two kidney transplant units: Centro Hospitalar Universitario de Coimbra, CHUC (Coimbra, Portugal) and Centro Hospitalar Universitario de Sao Joao, CHUSJ (Porto, Portugal), between 2013 and 2018. We then did statistical analysis and modeling, correlating these KT outcomes with donor and recipient characteristics, including KDPI. Artificial intelligence methods were performed to determine the best predictors of graft survival. Results: We analyzed a total of 808 kidney donors and 829 recipients of KT. The association between KDPI and graft dysfunction was only moderate. The decision tree machine learning algorithm proved to be better at predicting graft failure than artificial neural networks. Multinomial logistic regression revealed recipient age as an important prognostic factor for graft loss. Conclusions: In this Portuguese cohort, KDPI was not a good measure of KT survival, although it correlated with GFR 1 year post-transplant. The decision tree proved to be the best algorithm to predict graft failure. Age of the recipient was the most important predictor of graft dysfunction.
2022
Autores
Barbosa, D; Solteiro Pires, EJ; Leite, A; Moura Oliveira, PBd;
Publicação
Wireless Mobile Communication and Healthcare - 11th EAI International Conference, MobiHealth 2022, Virtual Event, November 30 - December 2, 2022, Proceedings
Abstract
Ventricular tachyarrhythmia (VTA), mainly ventricular tachycardia (VT) and ventricular fibrillation (VF) are the major causes of sudden cardiac death in the world. This work uses deep learning, more precisely, LSTM and biLSTM networks to predict VTA events. The Spontaneous Ventricular Tachyarrhythmia Database from PhysioNET was chosen, which contains 78 patients, 135 VTA signals, and 135 control rhythms. After the pre-processing of these signals and feature extraction, the classifiers were able to predict whether a patient was going to suffer a VTA event or not. A better result using a biLSTM was obtained, with a 5-fold-cross-validation, reaching an accuracy of 96.30%, 94.07% of precision, 98.45% of sensibility, and 96.17% of F1-Score. © 2023, ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering.
2021
Autores
Soares, AA; Carvalho, FA; Leite, A;
Publicação
JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING
Abstract
In this paper, a numerical study is conducted to investigate the influence of imposed inlet velocity profile on the hemodynamics in the region of the abdominal aorta bifurcation, for a patient specific. The influences of two different inflow velocity profiles on the hemodynamics of the abdominal aorta bifurcation have been investigated. The simulations were carried out under the same conditions changing only the shape of the inlet velocity profile in abdominal aorta. The simulations were performed with a parabolic profile (PP) and a uniform profile (UP) to quantify the hemodynamic differences between them, in the arterial regions, that is, in the upstream bifurcation, in the bifurcation and downstream bifurcation in each of the common iliac arteries. The results reported provide fundamental knowledge to a better understand of the inflow velocity profiles influence in the hemodynamics of the abdominal aorta bifurcation, such as the distribution of the velocity, pressure and wall shear stress (WSS), as well as the distribution of the stress hemodynamic descriptors on the artery wall. The results highlighted that the influence of the inlet velocity profiles in the time-averaged wall shear stress (AWSS) and relative residence time (RRT) is not significant after the abdominal aorta bifurcation. In general, for the hemodynamic descriptors studied, the correlation between the results obtained with the two velocity profiles reaches values close to 1 in the iliac arteries, in contrast to the abdominal region, where the correlation is less than 0.6.
2021
Autores
Magalhaes, C; Ribeiro, J; Leite, A; Pires, EJS; Pavao, J;
Publicação
ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2021, PT I
Abstract
Falls, especially in the elderly, are one of the main factors of hospitalization. Time-consuming intervention can be fatal or cause irreversible damages to the victims. On the other hand, there is currently a significant amount of smart clothing equipped with various sensors, particularly gyroscopes and accelerometers, which can be used to detect accidents. The creation of a tool that automatically detects eventual falls allows helping the victims as soon as possible. This works focuses in the automatic fall detection from sensors signals using long short-term memory networks. To train and test this approach, the Sisfall dataset is used, which considers the simulation of 23 adults and 15 older people. These simulations are based on everyday activities and the falls that may result from their execution. The results indicate that the procedure provides an accuracy score of 97.1% on the test set.
Teses supervisionadas
2017
Autor
Filipa Daniela Alves Carvalho
Instituição
UTAD
2017
Autor
Pedro Mauricio Pimenta Sampaio
Instituição
UTAD
2017
Autor
Cristina Monteiro Pinto
Instituição
UTAD
2017
Autor
Hugo Machado
Instituição
UTAD
2015
Autor
Filipa Daniela Alves Carvalho
Instituição
UTAD
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.