2025
Authors
Ghorvei, M; Karhu, T; Hietakoste, S; Ferreira Santos, D; Hrubos Strom, H; Islind, AS; Biedebach, L; Nikkonen, S; Leppaenen, T; Rusanen, M;
Publication
JOURNAL OF SLEEP RESEARCH
Abstract
Obstructive sleep apnea is a heterogeneous sleep disorder with varying phenotypes. Several studies have already performed cluster analyses to discover various obstructive sleep apnea phenotypic clusters. However, the selection of the clustering method might affect the outputs. Consequently, it is unclear whether similar obstructive sleep apnea clusters can be reproduced using different clustering methods. In this study, we applied four well-known clustering methods: Agglomerative Hierarchical Clustering; K-means; Fuzzy C-means; and Gaussian Mixture Model to a population of 865 suspected obstructive sleep apnea patients. By creating five clusters with each method, we examined the effect of clustering methods on forming obstructive sleep apnea clusters and the differences in their physiological characteristics. We utilized a visualization technique to indicate the cluster formations, Cohen's kappa statistics to find the similarity and agreement between clustering methods, and performance evaluation to compare the clustering performance. As a result, two out of five clusters were distinctly different with all four methods, while three other clusters exhibited overlapping features across all methods. In terms of agreement, Fuzzy C-means and K-means had the strongest (kappa = 0.87), and Agglomerative hierarchical clustering and Gaussian Mixture Model had the weakest agreement (kappa = 0.51) between each other. The K-means showed the best clustering performance, followed by the Fuzzy C-means in most evaluation criteria. Moreover, Fuzzy C-means showed the greatest potential in handling overlapping clusters compared with other methods. In conclusion, we revealed a direct impact of clustering method selection on the formation and physiological characteristics of obstructive sleep apnea clusters. In addition, we highlighted the capability of soft clustering methods, particularly Fuzzy C-means, in the application of obstructive sleep apnea phenotyping.
2025
Authors
Coelho J.P.; Coelho J.A.B.; Gonçalves J.;
Publication
Lecture Notes in Educational Technology
Abstract
This paper explores the integration of SolidWorks, LabVIEW, and Arduino as a comprehensive and cost-effective approach to teaching robotics to undergraduate students. In scenarios where real hardware is unavailable or prohibitively expensive, this methodology offers significant advantages. SolidWorks enables students to design and simulate robotic components in a virtual environment, fostering a deep understanding of mechanical design and engineering principles. LabVIEW provides an intuitive graphical interface for programming and control, allowing students to develop and test their algorithms. Finally, Arduino, as an open-source hardware platform, bridges the gap between virtual simulations and physical implementation, offering a hands-on experience with minimal financial investment. Together, these tools create a robust educational framework that enhances theoretical knowledge through practical application, encourages innovation, and prepares students for real-world engineering challenges. The paper concludes that this integrated approach not only mitigates the limitations of resource constraints but also enriches the learning experience by providing a versatile and accessible platform for robotics education.
2025
Authors
Fernandes, T; Silva, T; Vaz, J; Silva, J; Cruz, G; Sousa, A; Barroso, J; Martins, P; Filipe, V;
Publication
Communications in Computer and Information Science - Technology and Innovation in Learning, Teaching and Education
Abstract
2025
Authors
Benhanifia, A; Ben Cheikh, Z; Oliveira, PM; Valente, A; Lima, J;
Publication
INTELLIGENT SYSTEMS WITH APPLICATIONS
Abstract
Predictive maintenance (PDM) is emerging as a strong transformative tool within Industry 4.0, enabling significant improvements in the sustainability and efficiency of manufacturing processes. This in-depth literature review, which follows the PRISMA 2020 framework, examines how PDM is being implemented in several areas of the manufacturing industry, focusing on how it is taking advantage of technological advances such as artificial intelligence (AI) and the Internet of Things (IoT). The presented in-depth evaluation of the technological principles, implementation methods, economic consequences, and operational improvements based on academic and industrial sources and new innovations is performed. According to the studies, integrating CDM can significantly increase machine uptime and reliability while reducing maintenance costs. In addition, the transition to PDM systems that use real-time data to predict faults and plan maintenance more accurately holds out promising prospects. However, there are still gaps in the overall methodologies for measuring the return on investment of PDM implementations, suggesting an essential research direction.
2025
Authors
Alvarez M.; Brancalião L.; Coelho J.; Carneiro J.; Lopes R.; Costa P.; Gonçalves J.;
Publication
Lecture Notes in Educational Technology
Abstract
Force sensors are essential elements of actuator systems, providing measurement and force control in different domains. This literature review discusses its applications in the industry, academic research, and educational domains. In an industrial setup, force sensors enhance efficiency, safety, and reliability within automation systems, predominantly robotic arms and assembly lines. In the academic environment, using such sensors fosters innovation within robotics and biomechanical studies, allowing for testing theoretical models and new methodologies. In education, force sensors help students understand basic concepts about mechanics and robotics from practical work. Understanding this diverse application allows one to design effective actuator systems, promoting technological advances and improved learning experiences. With this literary review, the aim is to gain an understanding of the state of the art in force sensor actuators applied in various areas, such as academia, education, and industry.
2025
Authors
Franco-Gonçalo, P; Leite, P; Alves-Pimenta, S; Colaço, B; Gonçalves, L; Filipe, V; McEvoy, F; Ferreira, M; Ginja, M;
Publication
APPLIED SCIENCES-BASEL
Abstract
Canine hip dysplasia (CHD) screening relies on radiographic assessment, but traditional scoring methods often lack consistency due to inter-rater variability. This study presents an AI-driven system for automated measurement of the femoral head center to dorsal acetabular edge (FHC/DAE) distance, a key metric in CHD evaluation. Unlike most AI models that directly classify CHD severity using convolutional neural networks, this system provides an interpretable, measurement-based output to support a more transparent evaluation. The system combines a keypoint regression model for femoral head center localization with a U-Net-based segmentation model for acetabular edge delineation. It was trained on 7967 images for hip joint detection, 571 for keypoints, and 624 for acetabulum segmentation, all from ventrodorsal hip-extended radiographs. On a test set of 70 images, the keypoint model achieved high precision (Euclidean Distance = 0.055 mm; Mean Absolute Error = 0.0034 mm; Mean Squared Error = 2.52 x 10-5 mm2), while the segmentation model showed strong performance (Dice Score = 0.96; Intersection over Union = 0.92). Comparison with expert annotations demonstrated strong agreement (Intraclass Correlation Coefficients = 0.97 and 0.93; Weighted Kappa = 0.86 and 0.79; Standard Error of Measurement = 0.92 to 1.34 mm). By automating anatomical landmark detection, the system enhances standardization, reproducibility, and interpretability in CHD radiographic assessment. Its strong alignment with expert evaluations supports its integration into CHD screening workflows for more objective and efficient diagnosis and CHD scoring.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.