Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

2025

Externally validated and clinically useful machine learning algorithms to support patient-related decision-making in oncology: a scoping review

Authors
Santos, CS; Amorim-Lopes, M;

Publication
BMC MEDICAL RESEARCH METHODOLOGY

Abstract
Background This scoping review systematically maps externally validated machine learning (ML)-based models in cancer patient care, quantifying their performance, and clinical utility, and examining relationships between models, cancer types, and clinical decisions. By synthesizing evidence, this study identifies, strengths, limitations, and areas requiring further research. Methods The review followed the Joanna Briggs Institute's methodology, Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews guidelines, and the Population, Concept, and Context mnemonic. Searches were conducted across Embase, IEEE Xplore, PubMed, Scopus, and Web of Science (January 2014-September 2022), targeting English-language quantitative studies in Q1 journals (SciMago Journal and Country Ranking > 1) that used ML to evaluate clinical outcomes for human cancer patients with commonly available data. Eligible models required external validation, clinical utility assessment, and performance metric reporting. Studies involving genetics, synthetic patients, plants, or animals were excluded. Results were presented in tabular, graphical, and descriptive form. Results From 4023 deduplicated abstracts and 636 full-text reviews, 56 studies (2018-2022) met the inclusion criteria, covering diverse cancer types and applications. Convolutional neural networks were most prevalent, demonstrating high performance, followed by gradient- and decision tree-based algorithms. Other algorithms, though underrepresented, showed promise. Lung and digestive system cancers were most frequently studied, focusing on diagnosis and outcome predictions. Most studies were retrospective and multi-institutional, primarily using image-based data, followed by text-based and hybrid approaches. Clinical utility assessments involved 499 clinicians and 12 tools, indicating improved clinician performance with AI assistance and superior performance to standard clinical systems. Discussion Interest in ML-based clinical decision-making has grown in recent years alongside increased multi-institutional collaboration. However, small sample sizes likely impacted data quality and generalizability. Persistent challenges include limited international validation across ethnicities, inconsistent data sharing, disparities in validation metrics, and insufficient calibration reporting, hindering model comparison reliability.

2025

Discovering user groups of active modes of transport in urban centers using clustering methods

Authors
Felicio, S; Hora, J; Ferreira, MC; Sobral, T; Camacho, R; Galvao, T;

Publication
JOURNAL OF TRANSPORT & HEALTH

Abstract
Introduction: Urban centers face increasing congestion and pollution due to population growth driven by jobs, education, and entertainment. Promoting active modes like walking and cycling offers healthier and less polluting alternatives. Understanding perceptions of comfort (green areas, commercial areas, crowd density, noise, thermal sensation, air quality, allergenics), safety and security (street illumination, traffic volume, surveillance, visual appearance, and speed limits) are crucial for encouraging active modes adoption. This study categorizes user groups based on these indicators, supporting policymakers in the development of targeted strategies. Methods: We developed a questionnaire to support our empirical study and collected 653 responses. We have analyzed the data using clustering methods such as Affinity Propagation, BIRCH, Bisecting K-means, HAC, K-means, Mini-Batch K-means, and Spectral clustering. The best performing method (K-means) was used to identify the user groups while a random forest model evaluated the relative importance of indicators for each group. Results: The study identified five user groups based on urban mobility indicators for safety and security, comfort, and distance and time. Conclusions: These groups, distinguished by sociodemographic features, include: Street Aesthetes (young men valuing visual appeal), Safety Seekers (employed men prioritizing speed limits), Working Guardians (employed men focused on surveillance and green spaces), Urban Explorers (young women valuing air quality and low traffic), and Comfort Connoisseurs (employed women prioritizing noise reduction and aesthetics).

2025

Performance Analysis and Evaluation of Cloud Vision Emotion APIs

Authors
Khanal, SR; Sharma, P; Thapa, K; Fernandes, H; Barroso, JMP; Filipe, V;

Publication
Proceedings of the 11th International Conference on Software Development and Technologies for Enhancing Accessibility and Fighting Info-exclusion

Abstract
Facial expression is a way of communication that can be used to interact with computers or other electronic devices and the recognition of emotion from faces is an emerging practice with applications in many fields. Many cloud-based vision application programming interfaces are available that recognize emotion from facial images and video. In this article, the performances of two well-known APIs were compared using a public dataset of 980 images of facial emotions. For these experiments, a client program was developed that iterates over the image set, calls the cloud services, and caches the results of the emotion detection for each image. The performance was evaluated in each class of emotions using prediction accuracy. It has been found that the prediction accuracy for each emotion varies according to the cloud service being used. Similarly, each service provider presents a strong variation of performance according to the class being analyzed, as can be seen in more detail in these articles. © 2025 Elsevier B.V., All rights reserved.

2025

Interventions based on biofeedback systems to improve workers’ psychological well-being, mental health and safety: a systematic literature review (Preprint)

Authors
Ferreira, S; Rodrigues, MA; Mateus, C; Rodrigues, PP; Rocha, NB;

Publication

Abstract
BACKGROUND

In modern, high-speed work settings, the significance of mental health disorders is increasingly acknowledged as a pressing health issue, with potential adverse consequences for organizations, including reduced productivity and increased absenteeism. Over the past few years, various mental health management solutions, such as biofeedback applications, have surfaced as promising avenues to improve employees' mental well-being.

OBJECTIVE

To gain deeper insights into the suitability and effectiveness of employing biofeedback-based mental health interventions in real-world workplace settings, given that most research has predominantly been conducted within controlled laboratory conditions.

METHODS

A systematic review was conducted to identify studies that used biofeedback interventions in workplace settings. The review focused on traditional biofeedback, mindfulness, app-directed interventions, immersive scenarios, and in-depth physiological data presentation.

RESULTS

The review identified nine studies employing biofeedback interventions in the workplace. Breathing techniques showed great promise in decreasing stress and physiological parameters, especially when coupled with visual and/or auditory cues.

CONCLUSIONS

Future research should focus on developing and implementing interventions to improve well-being and mental health in the workplace, with the goal of creating safer and healthier work environments and contributing to the sustainability of organizations.

2025

Modeling and Control of an Educational Manipulator Robot Joint

Authors
Coelho J.A.B.; Brancalião L.; Alvarez M.; Costa P.; Gonçalves J.;

Publication
Lecture Notes in Educational Technology

Abstract
Integrating physical robots in an educational context often entails acquiring expensive equipment that often operates using proprietary software. Both conditions restrict the students from exploring and fully understanding the internal operation of robots. In response to these limitations, a three-degree-of-freedom robotic manipulator, based on the “EEZYbotARM MK2” open-source design by Carlo Franciscone, is being repurposed and integrated within the SimTwo simulation environment to operate within a hardware-in-the-loop architecture. To accomplish this objective, first, an open-source Arduino-based library was developed aiming at the robot’s online and offline programming akin to industrial robots. The firmware is able to communicate with the SimTwo software in which the digital twin’s robot is living. The dynamic behavior of the robot’s digital twin must be properly parametrized and aligned with the physical robot’s dynamics. This article describes the modeling of the robot joint’s actuator and its closed-loop controller formulation. The obtained results show that the dynamic behavior of the robot joint digital twin closely matches both open and closed-loop, the one of its physical counterpart.

2025

Optimizing Credit Risk Prediction for Peer-to-Peer Lending Using Machine Learning

Authors
Souadda, LI; Halitim, AR; Benilles, B; Oliveira, JM; Ramos, P;

Publication

Abstract
This study investigates the effectiveness of different hyperparameter tuning strategies for peer-to-peer risk management. Ensemble learning techniques have shown superior performance in this field compared to individual classifiers and traditional statistical methods. However, model performance is influenced not only by the choice of algorithm but also by hyperparameter tuning, which impacts both predictive accuracy and computational efficiency. This research compares the performance and efficiency of three widely used hyperparameter tuning methods, Grid Search, Random Search, and Optuna, across XGBoost, LightGBM, and Logistic Regression models. The analysis uses the Lending Club dataset, spanning from 2007 Q1 to 2020 Q3, with comprehensive data preprocessing to address missing values, class imbalance, and feature engineering. Model explainability is assessed through feature importance analysis to identify key drivers of default probability. The findings reveal comparable predictive performance among the tuning methods, evaluated using metrics such as G-mean, sensitivity, and specificity. However, Optuna significantly outperforms the others in computational efficiency; for instance, it is 10.7 times faster than Grid Search for XGBoost and 40.5 times faster for LightGBM. Additionally, variations in feature importance rankings across tuning methods influence model interpretability and the prioritization of risk factors. These insights underscore the importance of selecting appropriate hyperparameter tuning strategies to optimize both performance and explainability in peer-to-peer risk management models.

  • 56
  • 4235