2024
Authors
Portela, D; Amaral, R; Rodrigues, PP; Freitas, A; Costa, E; Fonseca, JA; Sousa Pinto, B;
Publication
HEALTH INFORMATION MANAGEMENT JOURNAL
Abstract
Background Quantifying and dealing with lack of consistency in administrative databases (namely, under-coding) requires tracking patients longitudinally without compromising anonymity, which is often a challenging task. Objective This study aimed to (i) assess and compare different hierarchical clustering methods on the identification of individual patients in an administrative database that does not easily allow tracking of episodes from the same patient; (ii) quantify the frequency of potential under-coding; and (iii) identify factors associated with such phenomena. Method We analysed the Portuguese National Hospital Morbidity Dataset, an administrative database registering all hospitalisations occurring in Mainland Portugal between 2011-2015. We applied different approaches of hierarchical clustering methods (either isolated or combined with partitional clustering methods), to identify potential individual patients based on demographic variables and comorbidities. Diagnoses codes were grouped into the Charlson an Elixhauser comorbidity defined groups. The algorithm displaying the best performance was used to quantify potential under-coding. A generalised mixed model (GML) of binomial regression was applied to assess factors associated with such potential under-coding. Results We observed that the hierarchical cluster analysis (HCA) + k-means clustering method with comorbidities grouped according to the Charlson defined groups was the algorithm displaying the best performance (with a Rand Index of 0.99997). We identified potential under-coding in all Charlson comorbidity groups, ranging from 3.5% (overall diabetes) to 27.7% (asthma). Overall, being male, having medical admission, dying during hospitalisation or being admitted at more specific and complex hospitals were associated with increased odds of potential under-coding. Discussion We assessed several approaches to identify individual patients in an administrative database and, subsequently, by applying HCA + k-means algorithm, we tracked coding inconsistency and potentially improved data quality. We reported consistent potential under-coding in all defined groups of comorbidities and potential factors associated with such lack of completeness. Conclusion Our proposed methodological framework could both enhance data quality and act as a reference for other studies relying on databases with similar problems.
2024
Authors
Klein, LC; Chellal, AA; Grilo, V; Gonçalves, J; Pacheco, MF; Fernandes, FP; Monteiro, FC; Lima, J;
Publication
OPTIMIZATION, LEARNING ALGORITHMS AND APPLICATIONS, PT II, OL2A 2023
Abstract
Angle assessment is crucial in rehabilitation and significantly influences physiotherapists' decision-making. Although visual inspection is commonly used, it is known to be approximate. This work aims to be a preliminary study about using the AI image-based to assess upper limb joint angles. Two main frameworks were evaluated: MediaPipe and Yolo v7. The study was performed with 28 participants performing four upper limb movements. The results showed that Yolo v7 achieved greater estimation accuracy than Mediapipe, with MAEs of around 5 degrees and 17 degrees, respectively. However, even with better results, Yolo v7 showed some limitations, including the point of detection in only a 2D plane, the higher computational power required to enable detection, and the difficulty of performing movements requiring more than one degree of Freedom (DOF). Nevertheless, this study highlights the detection capabilities of AI approaches, showing be a promising approach for measuring angles in rehabilitation activities, representing a cost-effective and easy-to-implement solution.
2024
Authors
Lucas, A; Golmaryami, S; Carvalhosa, S;
Publication
JOURNAL OF ENERGY STORAGE
Abstract
Hybrid Energy Storage Systems (HESS) have attracted attention in recent years, promising to outperform single batteries in some applications. This can be in decreasing the total cost of ownership, extending the combined lifetime, having higher versatility in providing multiple services, and reducing the physical hosting location. The sizing of hybrid systems in such a way that proves to optimally replace a single battery is a challenging task. This is particularly true if such a tool is expected to be a practical one, applicable to different inputs and which can provide a range of optimal solutions for decision makers as a support. This article provides exactly that, presenting a technology -independent sizing model for Hybrid Energy Storage Systems. The model introduces a three-step algorithm: the first block employs a clustering of time series using Dynamic Time Warping (DTW), to analyze the most recurring pattern. The second block optimizes the battery dispatch using Linear Programming (LP). Lastly, the third block identifies an optimal hybridization area for battery size configuration (H indicator), and offers practical insights for commercial technology selection. The model is applied to a real dataset from an office building to verify the tool and provides viable and non-viable hybridization sizing examples. For validation, the tool was compared to a full optimization approach and results are consistent both for the single battery sizing, as well as for confirming the hybrid combination dimensioning. The optimal solution potential (H) in the example provided is 0.13 and the algorithm takes a total of 30s to run a full year of data. The model is a Pythonbased tool, which is openly accessible on GitHub, to support and encourage further developments and use.
2024
Authors
Queirós, R; Pinto, CMA; Cruz, M;
Publication
VIII IEEE WORLD ENGINEERING EDUCATION CONFERENCE, EDUNINE 2024
Abstract
This paper explores the integration of virtual escape rooms as innovative educational tools in the realm of computer programming. Recognizing the need to engage and motivate learners in this complex domain, we investigate the use of virtual escape rooms in a typical educational setting where Learning Management Systems play a pivotal role. The paper starts by surveying existing escape rooms designed for teaching programming and related domains, considering factors such as interactivity, educational efficacy, and learner engagement. Additionally, it is emphasized the role of standards in creating interoperable learning environments, introducing IMS LTI for seamless integration with learning management systems and xAPI for tracking learner activities within escape rooms. By leveraging these standards and a Learning Record Store (LRS) as a central repository, an architectural framework is presented which enables personalized learning experiences and data-driven insights, catering to the diverse needs and preferences of the new generation of learners.
2024
Authors
Mina, J; Leite, PN; Carvalho, J; Pinho, L; Gonçalves, EP; Pinto, AM;
Publication
ROBOT 2023: SIXTH IBERIAN ROBOTICS CONFERENCE, VOL 2
Abstract
Underwater scenarios pose additional challenges to perception systems, as the collected imagery from sensors often suffers from limitations that hinder its practical usability. One crucial domain that relies on accurate underwater visibility assessment is underwater pipeline inspection. Manual assessment is impractical and time-consuming, emphasizing the need for automated algorithms. In this study, we focus on developing learning-based approaches to evaluate visibility in underwater environments. We explore various neural network architectures and evaluate them on data collected within real subsea scenarios. Notably, the ResNet18 model outperforms others, achieving a testing accuracy of 93.5% in visibility evaluation. In terms of inference time, the fastest model is MobileNetV3 Small, estimating a prediction within 42.45 ms. These findings represent significant progress in enabling unmanned marine operations and contribute to the advancement of autonomous underwater surveillance systems.
2024
Authors
Pinto, AM; Matos, A; Marques, V; Campos, DF; Pereira, MI; Claro, R; Mikola, E; Formiga, J; El Mobachi, M; Stoker, J; Prevosto, J; Govindaraj, S; Ribas, D; Ridao, P; Aceto, L;
Publication
Robotics and Automation Solutions for Inspection and Maintenance in Critical Infrastructures
Abstract
This chapter presents the use of Robotics in the Inspection and Maintenance of Offshore Wind as another highly challenging environment where autonomous robotics systems and digital transformations are proving high value. © 2024 Andry Maykol Pinto | Aníbal Matos | João V. Amorim Marques | Daniel Filipe Campos | Maria Inês Pereira | Rafael Claro | Eeva Mikola | João Formiga | Mohammed El Mobachi | Jaap-Jan Stoker | Jonathan Prevosto | Shashank Govindaraj | David Ribas | Pere Ridao | Luca Aceto.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.