2023
Authors
Ribeiro, M; Nunes, I; Castro, L; Costa-Santos, C; Henriques, TS;
Publication
FRONTIERS IN PUBLIC HEALTH
Abstract
IntroductionPerinatal asphyxia is one of the most frequent causes of neonatal mortality, affecting approximately four million newborns worldwide each year and causing the death of one million individuals. One of the main reasons for these high incidences is the lack of consensual methods of early diagnosis for this pathology. Estimating risk-appropriate health care for mother and baby is essential for increasing the quality of the health care system. Thus, it is necessary to investigate models that improve the prediction of perinatal asphyxia. Access to the cardiotocographic signals (CTGs) in conjunction with various clinical parameters can be crucial for the development of a successful model. ObjectivesThis exploratory work aims to develop predictive models of perinatal asphyxia based on clinical parameters and fetal heart rate (fHR) indices. MethodsSingle gestations data from a retrospective unicentric study from Centro Hospitalar e Universitario do Porto de Sao Joao (CHUSJ) between 2010 and 2018 was probed. The CTGs were acquired and analyzed by Omniview-SisPorto, estimating several fHR features. The clinical variables were obtained from the electronic clinical records stored by ObsCare. Entropy and compression characterized the complexity of the fHR time series. These variables' contribution to the prediction of asphyxia perinatal was probed by binary logistic regression (BLR) and Naive-Bayes (NB) models. ResultsThe data consisted of 517 cases, with 15 pathological cases. The asphyxia prediction models showed promising results, with an area under the receiver operator characteristic curve (AUC) >70%. In NB approaches, the best models combined clinical and SisPorto features. The best model was the univariate BLR with the variable compression ratio scale 2 (CR2) and an AUC of 94.93% [94.55; 95.31%]. ConclusionBoth BLR and Bayesian models have advantages and disadvantages. The model with the best performance predicting perinatal asphyxia was the univariate BLR with the CR2 variable, demonstrating the importance of non-linear indices in perinatal asphyxia detection. Future studies should explore decision support systems to detect sepsis, including clinical and CTGs features (linear and non-linear).
2023
Authors
Moreira, FN; Amorim, P;
Publication
CoRR
Abstract
2023
Authors
Elola, A; Aramendi, E; Oliveira, J; Renna, F; Coimbra, MT; Reyna, MA; Sameni, R; Clifford, GD; Rad, AB;
Publication
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS
Abstract
Objective: Murmurs are abnormal heart sounds, identified by experts through cardiac auscultation. The murmur grade, a quantitative measure of the murmur intensity, is strongly correlated with the patient's clinical condition. This work aims to estimate each patient's murmur grade (i.e., absent, soft, loud) from multiple auscultation location phonocardiograms (PCGs) of a large population of pediatric patients from a low-resource rural area. Methods: The Mel spectrogram representation of each PCG recording is given to an ensemble of 15 convolutional residual neural networks with channel-wise attention mechanisms to classify each PCG recording. The final murmur grade for each patient is derived based on the proposed decision rule and considering all estimated labels for available recordings. The proposed method is cross-validated on a dataset consisting of 3456 PCG recordings from 1007 patients using a stratified ten-fold cross-validation. Additionally, the method was tested on a hidden test set comprised of 1538 PCG recordings from 442 patients. Results: The overall cross-validation performances for patient-level murmur gradings are 86.3% and 81.6% in terms of the unweighted average of sensitivities and F1-scores, respectively. The sensitivities (and F1-scores) for absent, soft, and loud murmurs are 90.7% (93.6%), 75.8% (66.8%), and 92.3% (84.2%), respectively. On the test set, the algorithm achieves an unweighted average of sensitivities of 80.4% and an F1-score of 75.8%. Conclusions: This study provides a potential approach for algorithmic pre-screening in low-resource settings with relatively high expert screening costs. Significance: The proposed method represents a significant step beyond detection of murmurs, providing characterization of intensity, which may provide an enhanced classification of clinical outcomes.
2023
Authors
Pedrosa, J; Silva, R; Santos, C; Nunes, F; Mancio, J; Renna, F; Fontes Carvalho, R;
Publication
European Heart Journal - Cardiovascular Imaging
Abstract
2023
Authors
Litvak, M; Rabaev, I; Campos, R; Jorge, M; Jatowt, A;
Publication
CEUR Workshop Proceedings
Abstract
[No abstract available]
2023
Authors
Ferreira, J; Barbosa, A; Ribeiro, P;
Publication
COMPLEX NETWORKS AND THEIR APPLICATIONS XI, COMPLEX NETWORKS 2022, VOL 2
Abstract
Many complex systems exist in the physical world and therefore can be modeled by networks in which their nodes and edges are embedded in space. However, classical network motifs only use purely topological information and disregard other features. In this paper we introduce a novel and general subgraph abstraction that incorporates spatial information, therefore enriching its characterization power. Moreover, we describe and implement a method to compute and count our spatial subgraphs in any given network. We also provide initial experimental results by using our methodology to produce spatial fingerprints of real road networks, showcasing its discrimination power and how it captures more than just simple topology.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.