2023
Authors
Monteiro, P; Lima, C; Pinto, T; Nogueira, P; Reis, A; Filipe, V;
Publication
Distributed Computing and Artificial Intelligence, Special Sessions I, 20th International Conference, Guimaraes, Portugal, 12-14 July 2023.
Abstract
Industry 4.0 was publicly introduced in Germany in 2011 and is known as the fourth industrial revolution, whose goal is to improve manufacturing processes and increase the competitiveness of the manufacturing industry. Industry 4.0 uses technological concepts such as Cyber-Physical Systems, Internet of Things and Cloud Computing to create services, reduce costs and increase productivity in industry. This paper aims to explore the use of context-aware applications in Industry 4.0 in order to assist workers in decision making and thus improve the performance of factory production lines. This literature review is part of the project “Continental AA’s Factory of the Future” (Continental FoF) and will integrate a context-aware system in Industry 4.0 of the mentioned company, which is a manufacturer of radio frequency devices for the automotive industry. This systematic literature review identifies, from the researched solutions, the concept of context and context-awareness, the main technologies used in context-aware systems, how context management is performed, as well as the most used integration and communication protocols. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
2023
Authors
Wagner, L; Calvo, E; Amorim, P;
Publication
M&SOM-MANUFACTURING & SERVICE OPERATIONS MANAGEMENT
Abstract
Problem definition: Online retailers often receive customer orders comprising several products of differing origins. To fulfill these orders, retailers must ship multiple parcels from different locations and-unless they are grouped somewhere along the supply chain-these may reach the customer's doorstep one by one. Academic/practical relevance: We conjecture here that receiving products sequentially instead of all together affects a consumer's reaction to her purchases, possibly influencing-for good or ill-her decision to return products, as well as her overall service satisfaction. We use two-year granular data from an online fashion marketplace to test this hypothesis and characterize consumer behavioral responses to delivery consolidation and examine how it impacts supply chain stakeholders. Methodology: To achieve causal inference, we exploit the fact that the couriers used by the focal marketplace gather together certain parcels for reasons related more to the timing of their arrival than their actual customers, thereby exogenously consolidating the delivery of some orders. We construct a balanced sample of matched twin multiproduct orders that are alike in all respects except their delivery: consolidated (all parcels delivered jointly) versus otherwise (split). Results: We find that delivery consolidation benefits the marketplace and all its suppliers. By eliminating the stress associated with split deliveries, delivery consolidation pleases consumers as it leads to fewer returns and higher overall satisfaction. Managerial implications: Delivering all products in an order together, even if later, reduces the probability of a return, which improves the financial performance of the marketplace and its suppliers and reduces reverse logistics. Our results suggest that in our context, delivery speed matters less than the convenience of receiving all ordered goods in a single delivery, and we provide directions for adapting logistics strategies accordingly. Our empirical findings also imply that the return decisions of multiple products purchased at once should not be considered to be independent. Finding tractable ways of modeling this feature will be necessary in further driving retail practice through theoretical research that accounts for the behavioral implications of delivery consolidation when optimizing fulfillment decisions.
2023
Authors
Touati, Z; Araújo, RE; Mahmoud, I; Khedher, A;
Publication
U.Porto Journal of Engineering
Abstract
Reducing vibration and noise in electrical machines for a given application is not a straightforward task, especially when the application imposes some restrictions. There are many techniques for reducing vibration based on design or control. Switched reluctance motors (SRMs) have a double-saliency structure, which results in a radial pulsation force. Consequently, they cause vibration and acoustic noise. This paper investigates the correlation between the radial force and the skew angle of the stator and/or rotor circuits. We computed the analysis from two-dimensional (2D) transient magnetic finite-element analysis (FEA) of three machine topologies, namely the 12/8 three-phase SRM, the 6/4 three-phase SRM and the 8/6 four-phase SRM. Compared to SRM, these topologies have the same basic dimensions (stator outer diameter, rotor outer diameter, and length) and operate in the same magnetic circuit saturation. The flux linkage and torque characteristics of the different motors are presented. The radial force distributed on the stator yoke under various skewing angles is studied extensively by FEA for the three machines. It is also demonstrated the effect of skewing angles in the reduction of radial force without any reduction in torque production. © 2023, Universidade do Porto - Faculdade de Engenharia. All rights reserved.
2023
Authors
Pinto, AS; Bernardes, G; Davies, MEP;
Publication
Music and Sound Generation in the AI Era - 16th International Symposium, CMMR 2023, Tokyo, Japan, November 13-17, 2023, Revised Selected Papers
Abstract
Deep-learning beat-tracking algorithms have achieved remarkable accuracy in recent years. However, despite these advancements, challenges persist with musical examples featuring complex rhythmic structures, especially given their under-representation in training corpora. Expanding on our prior work, this paper demonstrates how our user-centred beat-tracking methodology effectively handles increasingly demanding musical scenarios. We evaluate its adaptability and robustness through musical pieces that exhibit rhythmic dissonance, while maintaining ease of integration with leading methods through minimal user annotations. The selected musical works—Uruguayan Candombe, Colombian Bambuco, and Steve Reich’s Piano Phase—present escalating levels of rhythmic complexity through their respective polyrhythm, polymetre, and polytempo characteristics. These examples not only validate our method’s effectiveness but also demonstrate its capability across increasingly challenging scenarios, culminating in the novel application of beat tracking to polytempo contexts. The results show notable improvements in terms of the F-measure, ranging from 2 to 5 times the state-of-the-art performance. The beat annotations used in fine-tuning reduce the correction edit operations from 1.4 to 2.8 times, while reducing the global annotation effort to between 16% and 37% of the baseline approach. Our experiments demonstrate the broad applicability of our human-in-the-loop strategy in the domain of Computational Ethnomusicology, confronting the prevalent Music Information Retrieval (MIR) constraints found in non-Western musical scenarios. Beyond beat tracking and computational rhythm analysis, this user-driven adaptation framework suggests wider implications for various MIR technologies, particularly in scenarios where musical signal ambiguity and human subjectivity challenge conventional algorithms. © 2025 Elsevier B.V., All rights reserved.
2023
Authors
O'Loughlin D.; McEachern M.G.; Szmigin I.; Karantinou K.; Barbosa B.; Lamprinakos G.; Fernández-Moya M.E.;
Publication
Research Handbook on Ethical Consumption
Abstract
2023
Authors
Abreu, M; Reis, LP; Lau, N;
Publication
CoRR
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.