2025
Authors
Cunha, A; Campos, MJ; Ferreira, MC; Fernandes, CS;
Publication
JOURNAL OF INTERPROFESSIONAL CARE
Abstract
Interprofessional collaboration is an essential competency for healthcare professionals, and escape rooms have emerged as an innovative strategy to enhance teamwork and communication. The purpose of this scoping review was to identify and summarize how escape rooms are used in the teaching and enhancement of interprofessional collaboration skills. We conducted a scoping review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Scoping Review (PRISMA-ScR) guidelines. A search of five databases, Scopus (R), Web of Science (R), CINAHL Complete (R), MEDLINE (R) and PsychINFO (R) was conducted for all articles until 1 January 2024. The review included 15 studies, mostly from the USA, involving a total of 2,434 participants across various healthcare professions. Key findings indicated significant improvements in group cohesion, communication, understanding of team roles, and interprofessional skills. Escape rooms can be an effective pedagogical tool in enhancing interprofessional competencies among healthcare students and professionals. Further research is needed to explore the sustainability of skills gained over time through escape rooms and to refine assessment methods.
2025
Authors
Shaji, N; Tabassum, S; Ribeiro, RP; Gama, J; Santana, P; Garcia, A;
Publication
COMPLEX NETWORKS & THEIR APPLICATIONS XIII, COMPLEX NETWORKS 2024, VOL 1
Abstract
Waste transport management is a critical sector where maintaining accurate records and preventing fraudulent or illegal activities is essential for regulatory compliance, environmental protection, and public safety. However, monitoring and analyzing large-scale waste transport records to identify suspicious patterns or anomalies is a complex task. These records often involve multiple entities and exhibit variability in waste flows between them. Traditional anomaly detection methods relying solely on individual transaction data, may struggle to capture the deeper, network-level anomalies that emerge from the interactions between entities. To address this complexity, we propose a hybrid approach that integrates network-based measures with machine learning techniques for anomaly detection in waste transport data. Our method leverages advanced graph analysis techniques, such as sub-graph detection, community structure analysis, and centrality measures, to extract meaningful features that describe the network's topology. We also introduce novel metrics for edge weight disparities. Further, advanced machine learning techniques, including clustering, neural network, density-based, and ensemble methods are applied to these structural features to enhance and refine the identification of anomalous behaviors.
2025
Authors
Reza, S; Ferreira, MC; Machado, JJM; Tavares, JMRS;
Publication
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS
Abstract
Acoustic monitoring of road traffic events is an indispensable element of Intelligent Transport Systems to increase their effectiveness. It aims to detect the temporal activity of sound events in road traffic auditory scenes and classify their occurrences. Current state-of-the-art algorithms have limitations in capturing long-range dependencies between different audio features to achieve robust performance. Additionally, these models suffer from external noise and variation in audio intensities. Therefore, this study proposes a spectrogram-specific transformer model employing a multi-head attention mechanism using the scaled product attention technique based on softmax in combination with Temporal Convolutional Networks to overcome these difficulties with increased accuracy and robustness. It also proposes a unique preprocessing step and a Deep Linear Projection method to reduce the dimensions of the features before passing them to the learnable Positional Encoding layer. Rather than monophonic audio data samples, stereophonic Mel-spectrogram features are fed into the model, improving the model's robustness to noise. State-of-the-art One-dimensional Convolutional Neural Networks and Long Short-term Memory models were used to compare the proposed model's performance on two well-known datasets. The results demonstrated its superior performance by achieving an improvement in accuracy of 1.51 to 3.55% compared to the studied baselines.
2025
Authors
Cambra Fierro, J; Patrício, L; Polo Redondo, Y; Trifu, A;
Publication
JOURNAL OF RESEARCH IN INTERACTIVE MARKETING
Abstract
Purpose - Customer-provider relationships unfold through multiple touchpoints across different channels. However, some touchpoints are more important than others. Such important touchpoints are viewed as moments of truth (MOTs). This study examines the impact of a series of touchpoints on an MOT, and the role MOTs play in determining future profitability and other behavioral outcomes (e.g. customer retention and customer cross-buy) in a business-to-business (B2B) context. Design/methodology/approach - Building upon social exchange theory, a conceptual model is proposed and tested that examines the impact of human, digital, and physical touchpoints and past MOTs on customer evaluation of a current MOT and on future customer outcomes. This research employs a longitudinal methodology based on a unique panel dataset of 2,970 B2B customers. Findings - Study results show that all touchpoints significantly contribute to MOTs, while human and physical touchpoints maintain their primacy during MOTs. The impact of MOTs on future customer outcomes is also demonstrated. Practical implications - This study highlights the need for prioritizing human and physical touchpoints in managing MOTs, and for carefully managing MOTs across time. Originality/value - Given its B2B outlook and longitudinal approach, this research contributes to the multichannel and interactive marketing literature by determining relevant touchpoints for B2B customers.
2025
Authors
Chandramohan, MS; da Silva, IM; Ribeiro, RP; Jorge, A; da Silva, JE;
Publication
ENVIRONMENTS
Abstract
This study investigates spatial distribution and chemical elemental composition screening in soils in Rome (Italy) using X-ray fluorescence analysis. Fifty-nine soil samples were collected from various locations within the urban areas of the Rome municipality and were analyzed for 19 elements. Multivariate statistical techniques, including nonlinear mapping, principal component analysis, and hierarchical cluster analysis, were employed to identify clusters of similar soil samples and their spatial distribution and to try to obtain environmental quality information. The soil sample clusters result from natural geological processes and anthropogenic activities on soil contamination patterns. Spatial clustering using the k-means algorithm further identified six distinct clusters, each with specific geographical distributions and elemental characteristics. Hence, the findings underscore the importance of targeted soil assessments to ensure the sustainable use of land resources in urban areas.
2025
Authors
Amarelo, A; Amarelo, B; Ferreira, MC; Fernandes, CS;
Publication
EUROPEAN JOURNAL OF ONCOLOGY NURSING
Abstract
Purpose: To aggregate, interpret, and synthesize findings from qualitative studies on patients' experiences with chemotherapy-induced peripheral neuropathy (CIPN). Methods: A qualitative metasynthesis was conducted following the thematic synthesis approach of Thomas & Harden. A systematic literature search was performed in MEDLINE, CINAHL, Psychology and Behavioral Sciences Collection, and Scopus, including studies published up to December 2024. Two researchers independently conducted the screening and data extraction. They also independently evaluated the quality of the included studies. The data from these studies were then thematically analyzed and synthesized using Dorothea Orem's model. Results: Eighteen studies were included. Four main categories were identified: (1) Physical and Functional Impact of CIPN, (2) Emotional and Psychological Impact, (3) Coping Strategies and Self-management, and (4) Support and Barriers to Health. The findings revealed distinct self-care deficits related to functional limitations, emotional distress, and coping challenges. Utilizing Orem's Nursing Theory of Self-Care Deficit, these deficits were mapped onto different levels of nursing intervention, ranging from compensatory support to educational and self-management strategies, emphasizing an action-oriented approach in patient care. Conclusions: This metasynthesis highlights the complex and multidimensional effects of peripheral neuropathy on the lives of cancer patients. Applying Orem's model underscores the critical role of nurses in addressing healthcare system gaps, functional impairments, and long-term adaptation challenges to enhance supportive care for individuals suffering from CIPN.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.