Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

2025

Electricity demand forecasting in green ports: Modelling and future research directions

Authors
Carrillo-Galvez, A; do Carmo, F; Soares, T; Mourao, Z; Ponomarev, I; Araújo, J; Bandeira, E;

Publication
TRANSPORT POLICY

Abstract
Recently, there has been growing attention on the decarbonisation of maritime transport, particularly regarding the landside operations at ports. This has spurred the development and implementation of strategies and policies aimed at enhancing the environmental performance of port activities. Among these strategies, the electrification of port infrastructure is emerging as a potential industry standard for the future. However, there remains a significant gap in understanding the patterns of electricity consumption in ports and how to forecast them accurately. To address this gap, this paper provides a review of the current literature on electricity demand in ports, examining practical applications, methodologies employed, and their key limitations. The findings indicate that, despite its importance in supporting the electrification process, electricity demand forecasting in ports has not received substantial attention in either industry or academic research, and there are no clearly established policies to support port authorities in obtaining the necessary data. Finally, the paper outlines potential directions for future research and how port authorities or local government agencies can contribute to these efforts.

2025

Extensible Data Ingestion System for Industry 4.0

Authors
Oliveira, B; Oliveira, Ó; Peixoto, T; Ribeiro, F; Pereira, C;

Publication
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Abstract
Industry 4.0 promotes a paradigm shift in the orchestration, oversight, and optimization of value chains across product and service life cycles. For instance, leveraging large-scale data from sensors and devices, coupled with Machine Learning techniques can enhance decision-making and facilitate various improvements in industrial settings, including predictive maintenance. However, ensuring data quality remains a significant challenge. Malfunctions in sensors or external factors such as electromagnetic interference have the potential to compromise data accuracy, thereby undermining confidence in related systems. Neglecting data quality not only compromises system outputs but also contributes to the proliferation of bad data, such as data duplication, inconsistencies, or inaccuracies. To consider these problems is crucial to fully explore the potential of data in Industry 4.0. This paper introduces an extensible system designed to ingest, organize, and monitor data generated by various sources, focusing on industrial settings. This system can serve as a foundation for enhancing intelligent processes and optimizing operations in smart manufacturing environments. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

2025

A production quality monitoring approach based on a condition index: an application on the glass container industry

Authors
Oliveira, MA; Guimaraes, L; Borges, JL; Almada Lobo, B;

Publication
INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH

Abstract
Ensuring process quality in modern manufacturing is increasingly challenging due to the complexity of production processes and reliance on skilled operators, which can lead to suboptimal solutions and poor quality. To address these challenges, we introduce a novel, unsupervised, robust, nonparametric control chart for Phase II monitoring. This chart tracks the degradation of a quality characteristic using a condition index that captures mean and scale shifts without relying on assumptions, offering high flexibility and adaptability. Comparative studies with state-of-the-art nonparametric schemes demonstrate faster detection capabilities and competitive accuracy across various scenarios. We validate our approach through its application in the glass container production process, showcasing its effectiveness in monitoring multiple defective rates. Although tested on defective rates, the methodology is adaptable to any quantifiable quality characteristic.

2025

A Nonlinear Control Allocation Strategy for Dual Half Bridge Power Converters

Authors
de Castro, R; Araujo, RE; Brembeck, J;

Publication
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Abstract
This work focuses on designing nonlinear control algorithms for dual half-bridge converters (DHBs). We propose a two-layer controller to regulate the current and voltage of the DHB. The first layer utilizes a change in the control variable to obtain a quasi-linear representation of the DHB, allowing for the application of simple linear controllers to regulate current and power flow. The second layer employs a nonlinear control allocation algorithm to select control actions that fulfill (pseudo) power setpoints specified by the first control layer; it also minimizes peak-to-peak currents in the DHB and enforces voltage balance constraints. We apply the DHB and this new control strategy to manage power flow in a hybrid energy storage system comprising of a battery and supercapacitors. Numerical simulation results demonstrate that, in comparison with state-of-the-art approaches, our control algorithm is capable of maintaining good transient behavior over a wide operating range, while reducing peak-to-peak current by up to 80%.

2025

Metabolic mapping for precision grape maturation: Application of a tomography-like method for site-specific management

Authors
Tosin, R; Rodrigues, L; Santos-Campos, M; Gonçalves, I; Barbosa, C; Santos, F; Martins, R; Cunha, M;

Publication
SMART AGRICULTURAL TECHNOLOGY

Abstract
This study demonstrates the application of a tomography-like (TL) method to monitor grape maturation dynamics over two growing seasons (2021-2022) in the Douro Wine Region. Using a Vis-NIR point-of-measurement sensor, which employs visible and near-infrared light to penetrate grape tissues non-destructively and provide spectral data to predict internal composition, this approach captures non-destructive measurements of key physicochemical properties, including soluble solids content (SSC), weight-to-volume ratio, chlorophyll and anthocyanin levels across internal grape tissues-skin, pulp, and seeds-over six post-veraison stages. The collected data were used to generate detailed metabolic maps of maturation, integrating topographical factors such as altitude and NDVI-based (normalised difference vegetation index) vigour assessments, which revealed significant (p < 0.05) variations in SSC, chlorophyll, and anthocyanin levels across vineyard zones. The metabolic maps generated from the TL method enable high-throughput data to reveal the impact of environmental variability on grape maturation across distinct vineyard areas. Predictive models using random forest (RF) and self-learning artificial intelligence (SL-AI) algorithms showed RF's robustness, achieving stable predictions with R-2 >= 0.86 and MAPE <= 33.83 %. To illustrate the TL method's practical value, three hypothetical decision models were developed for targeted winemaking objectives based on SSC, chlorophyll in the pulp, and anthocyanin in the skin and seeds. These models underscore the TL method's ability to support site-specific management (SSM) by providing actionable agricultural practices (e.g. harvest) into vineyard management, guiding winemakers to implement tailored interventions based on metabolic profiles rather than only cultivar characteristics. This precision viticulture (PV) approach enhances wine quality and production efficiency by aligning vineyard practices with specific wine quality goals.

2025

Metaverse branding: A review and future directions

Authors
Barbosa, B;

Publication
Strategic Brand Management in the Age of AI and Disruption

Abstract
The main aims of this chapter were to explore metaverse branding by identifying the main trends and contributions in extant literature. Through a bibliometry and the critical analysis of the main contributions in the literature, the chapter proposes a metaverse branding conceptualization, which shows how immersive metaverse experiences that provide multi- dimensional value enhance brand engagement, which leads to increased brand awareness, brand love, satisfaction, trust, and brand equity. These factors ultimately drive online and offline purchases and strengthen brand loyalty. Overall, this chapter and the proposed framework provide relevant insights for both managers defining metaverse branding strategies, and researchers interested in these topics. © 2025, IGI Global Scientific Publishing. All rights reserved.

  • 54
  • 4201