Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

2023

Cooperative Heterogeneous Robots for Autonomous Insects Trap Monitoring System in a Precision Agriculture Scenario

Authors
Berger, GS; Teixeira, M; Cantieri, A; Lima, J; Pereira, AI; Valente, A; de Castro, GGR; Pinto, MF;

Publication
AGRICULTURE-BASEL

Abstract
The recent advances in precision agriculture are due to the emergence of modern robotics systems. For instance, unmanned aerial systems (UASs) give new possibilities that advance the solution of existing problems in this area in many different aspects. The reason is due to these platforms' ability to perform activities at varying levels of complexity. Therefore, this research presents a multiple-cooperative robot solution for UAS and unmanned ground vehicle (UGV) systems for their joint inspection of olive grove inspect traps. This work evaluated the UAS and UGV vision-based navigation based on a yellow fly trap fixed in the trees to provide visual position data using the You Only Look Once (YOLO) algorithms. The experimental setup evaluated the fuzzy control algorithm applied to the UAS to make it reach the trap efficiently. Experimental tests were conducted in a realistic simulation environment using a robot operating system (ROS) and CoppeliaSim platforms to verify the methodology's performance, and all tests considered specific real-world environmental conditions. A search and landing algorithm based on augmented reality tag (AR-Tag) visual processing was evaluated to allow for the return and landing of the UAS to the UGV base. The outcomes obtained in this work demonstrate the robustness and feasibility of the multiple-cooperative robot architecture for UGVs and UASs applied in the olive inspection scenario.

2023

Investigating the reviewer assignment problem: A systematic literature review

Authors
Ribeiro, AC; Sizo, A; Reis, LP;

Publication
JOURNAL OF INFORMATION SCIENCE

Abstract
The assignment of appropriate reviewers to academic articles, known as the reviewer assignment problem (RAP), has become a crucial issue in academia. While there has been much research on RAP, there has not yet been a systematic literature review (SLR) examining the various approaches, techniques, algorithms and discoveries related to this topic. To conduct the SLR, we identified and evaluated relevant articles from four databases using defined inclusion and exclusion criteria. We analysed the selected articles and extracted information, and assessed their quality. Our review identified 67 articles on RAP published in conferences and journals up to mid-2022. As one of the main challenges in RAP is acquiring open data, we have studied the data sources used by researchers and found that most studies use real data from conferences, bibliographic databases and online academic search engines. RAP is divided into two main phases: (1) finding/recommending expert reviewers and (2) assigning reviewers to submitted manuscripts. In Phase 1, we have identified that decision support systems, recommendation systems, and machine learning-oriented approaches are more commonly used due to better results. In Phase 2, heuristics and metaheuristics are the approaches that present better results and are consequently more commonly used by researchers. Based on the analysed studies, we have identified potential areas for future research that could lead to improved results. Specifically, we suggest exploring the application of deep neural networks for calculating the degree of correspondence and using the Boolean satisfiability problem to optimise the attribution process.

2023

Collecting cognitive strategies applied by students during test case design

Authors
Cammaerts, F; Snoeck, M; Paiva, ACR;

Publication
27TH INTERNATIONAL CONFERENCE ON EVALUATION AND ASSESSMENT IN SOFTWARE ENGINEERING, EASE 2023

Abstract
It is important to properly test developed software because this may contribute to fewer bugs going unreported in deployed software. Often, little attention is spent on the topic of software testing in curricula, yielding graduate students without adequate preparation to deal with the quality standards required by the industry. This problem could be tackled by introducing bite-sized software testing education capsules that allow teachers to introduce software testing to their students in a less time-consuming manner and with a hands-on component that will facilitate learning. In order to design appropriate software testing educational tools, it is necessary to consider both the software testing needs of the industry and the cognitive models of students. This work-in-progress paper proposes an experimental design to gain an understanding of the cognitive strategies used by students during test case design based on real-life cases. Ultimately, the results of the experiment will be used to develop educational support for teaching software testing.

2023

NonInvasive Glucose Fiber Sensor Based on Self-Imaging Technique: Proof of Concept

Authors
Cunha, C; Silva, S; Frazão, O; Novais, S;

Publication
EPJ Web of Conferences

Abstract
This paper proposes a proof of concept for a reflective fiber optic sensor based on multimode interference, designed to measure glucose concentrations in aqueous solutions that mimic the range of glucose concentrations found in human saliva. The sensor is fabricated by splicing a short section of coreless silica fiber into a standard single-mode fiber. By studying the principles of multimode interference and Self-imaging it was developed a sensing head that has a total length of 29.1 mm, approximately equal to the second self-image cycle. This sensing head allowed us to detect low concentrations of glucose (ranging from 0 to 268 mg/dl).

2023

In-Field Hyperspectral Proximal Sensing for Estimating Grapevine Water Status to Support Smart Precision Viticulture

Authors
Erica David; Renan Tosin; Igor Gonçalves; Leandro Rodrigues; Catarina Barbosa; Filipe Santos; Hugo Pinheiro; Rui Martins; Mario Cunha;

Publication
The 3rd International Electronic Conference on Agronomy

Abstract

2023

Simulation tools for electricity markets considering power flow analysis

Authors
Veiga, B; Santos, G; Pinto, T; Faia, R; Ramos, C; Vale, Z;

Publication
ENERGY

Abstract
The share of renewable generation is growing worldwide, increasing the complexity of the grids operation to maintain its stability and balance. This leads to an increased need for designing new electricity markets (EMs) suited to this new reality. Simulation tools are widely used to experiment and analyze the potential impacts of new solutions, such as novel EM designs and power flow analysis and validation. This work introduces two web services for EMs' simulation and study, in addition to power flow evaluation and validation, namely the Elec-tricity Market Service (EMS) and Power Flow Service (PFS). EMS enables the simulation of two auction-based algorithms and the execution of three wholesale EMs. PFS creates and evaluates electrical grids from the transmission to distribution grids. Being published as web services facilitates their integration with other ser-vices, systems, or software agents. Combining them allows for the simulation of EMs from wholesale to local markets and testing if the results are compatible with a specific grid. This article presents a detailed description of each service and a case study of an electricity trading community participating in the MIBEL day-ahead market through an aggregator to reduce their energy bills. The results demonstrate the accuracy and usefulness of the proposed services.

  • 509
  • 4363