2025
Authors
Braga, R; Pereira, J; Coelho, F;
Publication
40TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING
Abstract
Developers of data-intensive georeplicated applications face a difficult decision when selecting a database system. As captured by the CAP theorem, CP systems such as Spanner provide strong consistency that greatly simplifies application development. AP systems such as AntidoteDB providing Transactional Causal Consistency (TCC), ensure availability in face of network partitions and isolate performance from wide-area round-trip times, but avoid lost-update anomalies only when values can be merged. Ideally, an application should be able to adapt to current data and network conditions by selecting which transactional consistency to use for each transaction. In this paper, we test the hypothesis that a georeplicated database system can be built at its core providing only TCC, hence, being AP, but allow an application to execute some transactions under Snapshot Isolation (SI), hence CP. Our main result is showing that this can be achieved even when all the interaction happens through the TCC database system, without additional communication channels between the participants. A preliminary experimental evaluation with a proof-of-concept implementation using AntidoteDB shows that this approach is feasible.
2025
Authors
Barbosa, LS;
Publication
SOFTWARE ENGINEERING AND FORMAL METHODS, SEFM 2024
Abstract
Modelling complex information systems often entails the need for dealing with scenarios of inconsistency in which several requirements either reinforce or contradict each other. This lecture summarises recent joint work with Juliana Cunha, Alexandre Madeira and Ana Cruz on a variant of transition systems endowed with positive and negative accessibility relations, and a metric space over the lattice of truth values. Such structures are called paraconsistent transition systems, the qualifier stressing a connection to paraconsistent logic, a logic taking inconsistent information as potentially informative. A coalgebraic perspective on this family of structures is also discussed.
2025
Authors
Magalhaes, C; Ribeiro, AI; Rodrigues, R; Meireles, A; Alves, AC; Rocha, J; de Lima, FP; Martins, M; Mitu, B; Satulu, V; Dinescu, G; Padrao, J; Zille, A;
Publication
APPLIED SURFACE SCIENCE
Abstract
The manufacturing process of thermoregulation products with polyester (PES) fabric and conductive polymers such as poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonate) (PEDOT:PSS) with proper wearability, comfort, and high performance is still a challenge due to low adhesion, environment instability and nonuniform coatings. This study presents a simple and effective method for producing thermoregulatory PES fabrics using the Joule heating effect. Textiles treated with dielectric barrier discharge (DBD) plasma were functionalized with PEDOT:PSS incorporating secondary dopants, such as dimethyl sulfoxide (DMSO) and glycerol (GLY). PEDOT:PSS was used because it does not compromise the mechanical properties of base materials. DBD plasma treatment was applied to PES to improve the substrate's functional groups and consequently increase adhesion and homogeneity of the PEDOT:PSS on the substrate. The polymer were applied to the textiles by dip-pad-drycure method ensuring uniform distribution and homogeneous heating of the materials. The samples' conductivity, impedance, potential and Joule effect, and their morphological, chemical and thermal properties were studied. Control samples without plasma treatment and secondary dopants were also prepared. The results showed that the DBD-treated samples, coated with 5 layers of PEDOT:PSS, doped with DMSO 7 % (w/v), displayed the best conductivity and Joule effect performance reaching 44.3 degrees C after 1 h.
2025
Authors
Tinoco, D; Menezes, R; Baquero, C;
Publication
CoRR
Abstract
2025
Authors
Dantas, A; Baquero, C;
Publication
Proceedings of the 12th Workshop on Principles and Practice of Consistency for Distributed Data, PaPoC 2025, World Trade Center, Rotterdam, The Netherlands, 30 March 2025- 3 April 2025
Abstract
Virtual presence demands ultra-low latency, a factor that centralized architectures, by their nature, cannot minimize. Local peer-to-peer architectures offer a compelling alternative, but also pose unique challenges in terms of network infrastructure.This paper introduces a prototype leveraging Conflict-Free Replicated Data Types (CRDTs) to enable real-time collaboration in a shared virtual environment. Using this prototype, we investigate latency, synchronization, and the challenges of decentralized coordination in dynamic non-Byzantine contexts.We aim to question prevailing assumptions about decentralized architectures and explore the practical potential of P2P in advancing virtual presence. This work challenges the constraints of mediated networks and highlights the potential of decentralized architectures to redefine collaboration and interaction in digital spaces. © 2025 Copyright is held by the owner/author(s).
2025
Authors
Lopes, F; Soares, C; Cortez, P;
Publication
MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2023, PT II
Abstract
This research addresses the challenge of generating synthetic data that resembles real-world data while preserving privacy. With privacy laws protecting sensitive information such as healthcare data, accessing sufficient training data becomes difficult, resulting in an increased difficulty in training Machine Learning models and in overall worst models. Recently, there has been an increased interest in the usage of Generative Adversarial Networks (GAN) to generate synthetic data since they enable researchers to generate more data to train their models. GANs, however, may not be suitable for privacy-sensitive data since they have no concern for the privacy of the generated data. We propose modifying the known Conditional Tabular GAN (CTGAN) model by incorporating a privacy-aware loss function, thus resulting in the Private CTGAN (PCTGAN) method. Several experiments were carried out using 10 public domain classification datasets and comparing PCTGAN with CTGAN and the state-of-the-art privacy-preserving model, the Differential Privacy CTGAN (DP-CTGAN). The results demonstrated that PCTGAN enables users to fine-tune the privacy fidelity trade-off by leveraging parameters, as well as that if desired, a higher level of privacy.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.