Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

2026

Adaptive Wine Recommendation in Online Environments

Autores
de Azambuja R.X.; Morais A.J.; Filipe V.;

Publicação
Lecture Notes in Networks and Systems

Abstract
Deep learning and large language models (LLMs) have recently enabled studies in state-of-the-art technologies that enhance recommender systems. This research focuses on solving the next-item recommendation problem using these challenging technologies in Web applications, specifically focusing on a case study in the wine domain. This paper presents the characterization of the framework developed for the object of study: adaptive recommendation based on new modeling of the initial data to explore the user’s dynamic taste profile. Following the design science research methodology, the following contributions are presented: (i) a novel dataset of wines called X-Wines; (ii) an updated recommender model called X-Model4Rec—eXtensible Model for Recommendation supported in attention and transformer mechanisms which constitute the core of the LLMs; and (iii) a collaborative Web platform to support adaptive wine recommendation to users in an online environment. The results indicate that the solutions proposed in this research can improve recommendations in online environments and promote further scientific work on specific topics.

2026

Machine Learning and Knowledge Discovery in Databases. Research Track - European Conference, ECML PKDD 2025, Porto, Portugal, September 15-19, 2025, Proceedings, Part II

Autores
Ribeiro, RP; Pfahringer, B; Japkowicz, N; Larrañaga, P; Jorge, AM; Soares, C; Abreu, PH; Gama, J;

Publicação
ECML/PKDD (2)

Abstract

2026

Machine Learning and Knowledge Discovery in Databases. Research Track - European Conference, ECML PKDD 2025, Porto, Portugal, September 15-19, 2025, Proceedings, Part I

Autores
Ribeiro, RP; Pfahringer, B; Japkowicz, N; Larrañaga, P; Jorge, AM; Soares, C; Abreu, PH; Gama, J;

Publicação
ECML/PKDD (1)

Abstract

2026

Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track - European Conference, ECML PKDD 2025, Porto, Portugal, September 15-19, 2025, Proceedings, Part IX

Autores
Dutra, I; Pechenizkiy, M; Cortez, P; Pashami, S; Jorge, AM; Soares, C; Abreu, PH; Gama, J;

Publicação
ECML/PKDD (9)

Abstract

2026

Machine Learning and Knowledge Discovery in Databases. Research Track and Applied Data Science Track - European Conference, ECML PKDD 2025, Porto, Portugal, September 15-19, 2025, Proceedings, Part VIII

Autores
Pfahringer, B; Japkowicz, N; Larrañaga, P; Ribeiro, RP; Dutra, I; Pechenizkiy, M; Cortez, P; Pashami, S; Jorge, AM; Soares, C; Abreu, PH; Gama, J;

Publicação
ECML/PKDD (8)

Abstract

2026

Price optimization for round trip car sharing

Autores
Currie, CSM; M'Hallah, R; Oliveira, BB;

Publicação
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH

Abstract
Car sharing, car clubs and short-term rentals could support the transition toward net zero but their success depends on them being financially sustainable for service providers and attractive to end users. Dynamic pricing could support this by incentivizing users while balancing supply and demand. We describe the usage of a round trip car sharing fleet by a continuous time Markov chain model, which reduces to a multi-server queuing model where hire duration is assumed independent of the hourly rental price. We present analytical and simulation optimization models that allow the development of dynamic pricing strategies for round trip car sharing systems; in particular identifying the optimal hourly rental price. The analytical tractability of the queuing model enables fast optimization to maximize expected hourly revenue for either a single fare system or a system where the fare depends on the number of cars on hire, while accounting for stochasticity in customer arrival times and durations of hire. Simulation optimization is used to optimize prices where the fare depends on the time of day or hire duration depends on price. We present optimal prices for a given customer population and show how the expected revenue and car availability depend on the customer arrival rate, willingness-to-pay distribution, dependence of the hire duration on price, and size of the customer population. The results provide optimal strategies for pricing of car sharing and inform strategic managerial decisions such as whether to use time-or state-dependent pricing and optimizing the fleet size.

  • 5
  • 4385