2026
Autores
Melo, M; Carneiro, A; Campilho, A; Mendonça, AM;
Publicação
PATTERN RECOGNITION AND IMAGE ANALYSIS, IBPRIA 2025, PT II
Abstract
The segmentation of the foveal avascular zone (FAZ) in optical coherence tomography angiography (OCTA) images plays a crucial role in diagnosing and monitoring ocular diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). However, accurate FAZ segmentation remains challenging due to image quality and variability. This paper provides a comprehensive review of FAZ segmentation techniques, including traditional image processing methods and recent deep learning-based approaches. We propose two novel deep learning methodologies: a multitask learning framework that integrates vessel and FAZ segmentation, and a conditionally trained network that employs vessel-aware loss functions. The performance of the proposed methods was evaluated on the OCTA-500 dataset using the Dice coefficient, Jaccard index, 95% Hausdorff distance, and average symmetric surface distance. Experimental results demonstrate that the multitask segmentation framework outperforms existing state-of-the-art methods, achieving superior FAZ boundary delineation and segmentation accuracy. The conditionally trained network also improves upon standard U-Net-based approaches but exhibits limitations in refining the FAZ contours.
2026
Autores
Mendes Neves, T; Meireles, L; Mendes Moreira, JC;
Publicação
Lecture Notes in Computer Science
Abstract
Large Events Models (LEMs) are a class of models designed to predict and analyze the sequence of events in soccer matches, capturing the complex dynamics of the game. The original LEM framework, based on a chain of classifiers, faced challenges such as synchronization, scalability issues, and limited context utilization. This paper proposes a unified and scalable approach to model soccer events using a tabular autoregressive model. Our models demonstrate significant improvements over the original LEM, achieving higher accuracy in event prediction and better simulation quality, while also offering greater flexibility and scalability. The unified LEM framework enables a wide range of applications in soccer analytics that we display in this paper, including real-time match outcome prediction, player performance analysis, and game simulation, serving as a general solution for many problems in the field. © 2025 Elsevier B.V., All rights reserved.
2026
Autores
Patrício, C; Barbano, CA; Fiandrotti, A; Renzulli, R; Grangetto, M; Teixeira, LF; Neves, JC;
Publicação
PATTERN RECOGNITION LETTERS
Abstract
Contrastive Analysis (CA) detects anomalies by contrasting patterns unique to a target group (e.g., unhealthy subjects) from those in a background group (e.g., healthy subjects). In the context of brain MRIs, existing CA approaches rely on supervised contrastive learning or variational autoencoders (VAEs) using both healthy and unhealthy data, but such reliance on target samples is challenging in clinical settings. Unsupervised Anomaly Detection (UAD) learns a reference representation of healthy anatomy, eliminating the need for target samples. Deviations from this reference distribution can indicate potential anomalies. In this context, diffusion models have been increasingly adopted in UAD due to their superior performance in image generation compared to VAEs. Nonetheless, precisely reconstructing the anatomy of the brain remains a challenge. In this work, we bridge CA and UAD by reformulating contrastive analysis principles for the unsupervised setting. We propose an unsupervised framework to improve the reconstruction quality by training a self-supervised contrastive encoder on healthy images to extract meaningful anatomical features. These features are used to condition a diffusion model to reconstruct the healthy appearance of a given image, enabling interpretable anomaly localization via pixel-wise comparison. We validate our approach through a proof-of-concept on a facial image dataset and further demonstrate its effectiveness on four brain MRI datasets, outperforming baseline methods in anomaly localization on the NOVA benchmark.
2026
Autores
Simões E.; Simões A.C.; Rodrigues J.C.; Lourenço P.;
Publicação
IFIP Advances in Information and Communication Technology
Abstract
Companies are increasingly adopting technologies such as Robotic Process Automation (RPA) to reduce costs and improve productivity. RPA is deployed in areas like accounting, payroll, and finance to automate business processes. While RPA does not necessarily result in unemployment, it has notable effects on employees and company governance. This study explores the impact of RPA implementation on employees and company governance, using a qualitative methodology based on thirteen semi-structured interviews with RPA experts from four multinational companies. The results indicate that the impacts of RPA vary depending on the automation strategy adopted (task-oriented or process-oriented). In task-oriented strategies, citizen developers often play a central role, contributing to rapid implementation. In contrast, process-oriented strategies tend to rely on professional developers and require more structured governance. The findings also point out that RPA influences not only task execution but also employee upskilling, job role redefinition, and the evolution of governance models. The study proposes an integrated framework linking automation strategy, governance, upskilling, and employee adaptation, offering both practical insights and theoretical contributions to digital transformation research and for managing risks and enhancing workforce capabilities. It also advances academic understanding by linking real-world RPA implementations to organisational and technological impacts.
2026
Autores
Robalinho, P; Piaia, V; Lobo-Ribeiro, A; Silva, S; Frazao, O;
Publicação
IEEE PHOTONICS TECHNOLOGY LETTERS
Abstract
The present letter proposes the implementation of Vernier-effect harmonics through the virtualization of different reference cavities. A Fabry-Perot interferometer (FPI), actuated by a piezoelectric transducer (PZT), was employed as the sensing element. Subsequently, the sensitivity of the dynamic range was investigated for both the individual interferometer and the implementation of the Virtual Vernier effect. A sensitivity of (8 +/- 0.05)x10(-3) nm/nm was achieved for the single sensor measurement. Considering the implementation of the Vernier effect, the following sensitivities were obtained: (65.6 +/- 0.08)x10(-3) nm/nm for the fundamental, (132 +/- 1)x10-3 nm/nm for the first harmonic, and (192 +/- 1)x10(-3) nm/nm for the second harmonic. Furthermore, a maximum dynamic range of 11.25 mu m and a maximum resolution of 5 pm were achieved. This study highlights the advantages of simultaneously measuring both a single sensor cavity and a harmonic of the Virtual Vernier effect, in order to achieve large dynamic ranges along with high resolution.
2026
Autores
Cordeiro, A; Rocha, LF; Boaventura-Cunha, J; Figueiredo, D; Souza, JP;
Publicação
ROBOTICS AND AUTONOMOUS SYSTEMS
Abstract
Robotic bin-picking is a critical operation in modern industry, which is characterised by the detection, selection, and placement of items from a disordered and cluttered environment, which can be boundary limited or not, e.g. bins, boxes or containers. In this context, perception systems are employed to localise, detect and estimate grasping points. Despite the considerable progress made, from analytical approaches to recent deep learning methods, challenges still remain. This is evidenced by the growing innovation proposing distinct solutions. This paper aims to review perception methodologies developed since 2009, providing detailed descriptions and discussions of their implementation. Additionally, it presents an extensive study, detailing each work, along with a comprehensive overview of the advancements in bin-picking perception.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.