Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

2026

AI Enabled Robotic Loco-Manipulation

Authors
Li, Q; Xie, M; Tokhi, MO; Silva, MF;

Publication
Lecture Notes in Networks and Systems

Abstract

2026

Crisis or Redemption with AI and Robotics? The Dawn of a New Era

Authors
Silva, MF; Tokhi, MO; Ferreira, MIA; Malheiro, B; Guedes, P; Ferreira, P; Costa, MT;

Publication
Lecture Notes in Networks and Systems

Abstract

2026

Mapping Ethics in EPS@ISEP Robotics Projects

Authors
Malheiro, B; Guedes, P; F Silva, MF; Ferreira, PD;

Publication
Lecture Notes in Networks and Systems

Abstract
The European Project Semester (EPS), offered by the Instituto Superior de Engenharia do Porto (ISEP), is a capstone programme designed for undergraduate students in engineering, product design, and business. EPS@ISEP fosters project-based learning, promotes multicultural and interdisciplinary teamwork, and ethics- and sustainability-driven design. This study applies Natural Language Processing techniques, specifically text mining, to analyse project papers produced by EPS@ISEP teams. The proposed method aims to identify evidence of ethical concerns within EPS@ISEP projects. An innovative keyword mapping approach is introduced that first defines and refines a list of ethics-related keywords through prompt engineering. This enriched list of keywords is then used to systematically map the content of project papers. The findings indicate that the EPS@ISEP robotics project papers analysed demonstrate awareness of ethical considerations and actively incorporate them into design processes. The method presented is adaptable to various application areas, such as monitoring compliance with responsible innovation or sustainability policies. © 2025 Elsevier B.V., All rights reserved.

2026

On Quantitative Solution Iteration in QAlloy

Authors
Silva, P; Macedo, N; Oliveira, JN;

Publication
RIGOROUS STATE-BASED METHODS, ABZ 2025

Abstract
A key feature of model finding techniques allows users to enumerate and explore alternative solutions. However, it is challenging to guarantee that the generated instances are relevant to the user, representing effectively different scenarios. This challenge is exacerbated in quantitative modelling, where one must consider both the qualitative, structural part of a model, and the quantitative data on top of it. This results in a search space of possibly infinite candidate solutions, often infinitesimally similar to one another. Thus, research on instance enumeration in qualitative model finding is not directly applicable to the quantitative context, which requires more sophisticated methods to navigate the solution space effectively. The main goal of this paper is to explore a generic approach for navigating quantitative solution spaces and showcase different iteration operations, aiming to generate instances that differ considerably from those previously seen and promote a larger coverage of the search space. Such operations are implemented in QAlloy - a quantitative extension to Alloy - on top of Max-SMT solvers, and are evaluated against several examples ranging, in particular, over the integer and fuzzy domains.

2026

Strengthening City-Citizen Engagement: A Mobile App to Enhance Pedestrian Safety and Comfort

Authors
Ferreira, MC; da Silva, JFL; Abrantes, D; Hora, J; Felício, S; Galvao, T; Coimbra, M;

Publication
TRANSPORT TRANSITIONS: ADVANCING SUSTAINABLE AND INCLUSIVE MOBILITY - VOL 1

Abstract
-This study focuses on providing meaningful information to vulnerable road users (VRUs) to support their objectives and perceptions while navigating urban spaces, employing a novel route planning concept. Through three focus group sessions, a comprehensive survey was conducted to identify the needs and concerns of VRUs, leading to the development of an integrated and collaborative mobile application for active mobility. The application encompasses route calculation, prioritizing safety, comfort, civic participation, and empathy. The solution aims to bridge citizen users and city managers, facilitating alerts, historical information on safety and comfort, and collaborative problem-solving and sharing of urban attractions. A prototype of the concept was developed and extensively tested by potential users, and subjective evaluation and feedback demonstrated the usefulness and added value of the integrated and collaborative approach. This study highlights the proposed solution relevance and differentiation from official alerts, user experiences, and civic participation, positioning it as a comprehensive solution for active mobility.

2026

Economic benchmarking of assisted pollination methods for kiwifruit flowers: Assessment of cost-effectiveness of robotic solution

Authors
Pinheiro, I; Moura, P; Rodrigues, L; Pacheco, AP; Teixeira, JG; Valente, LG; Cunha, M; Neves Dos Santos, FN;

Publication
Agricultural Systems

Abstract
In 2023, global kiwifruit production reached over 4.4 million tonnes, highlighting the crop's significant economic importance. However, achieving high yields depends on adequate pollination. In Actinidia species, pollen is transferred by insects from male to female flowers on separate plants. Natural pollination faces increasing challenges due to the decline in pollinator populations and climate variability, driving the adoption of assisted pollination methods. This study examines the Portuguese kiwifruit sector, one of the world's top 12 producers, using a novel mixed-methods approach that integrates both qualitative and quantitative analyses to assess the feasibility of robotic pollination. The qualitative study identifies the benefits and challenges of current methods and explores how robotic pollination could address these challenges. The quantitative analysis explores the cost-effectiveness and practicality of implementing robotic pollination as a product and service. Findings indicate that most farmers use handheld pollination devices but face pollen wastage and application timing challenges. Economic analysis establishes a break-even point of €685 per hectare for an annual single application, with a first robotic pollination of €17 146 becoming cost-effective for orchards of at least 3.5 hectares and a second robotic solution of €34 293 becoming cost-effective for orchards up to 7 hectares. A robotic pollination service priced at €685 per hectare per application presents a low-risk and a viable alternative for growers. This study provides robust economic insights supporting the adoption of robotic pollination technologies. This study is crucial to make informed decisions to enhance kiwifruit production's productivity and sustainability through precise robotic-assisted pollination. © 2025 Elsevier B.V., All rights reserved.

  • 4
  • 4312