Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

2025

Modeling Electricity Markets and Energy Systems: Challenges and Opportunities

Authors
Aliabadi, DE; Pinto, T;

Publication
ENERGIES

Abstract
[No abstract available]

2025

<i>MedShapeNet</i> - a large-scale dataset of 3D medical shapes for computer vision

Authors
Li, JN; Zhou, ZW; Yang, JC; Pepe, A; Gsaxner, C; Luijten, G; Qu, CY; Zhang, TZ; Chen, XX; Li, WX; Wodzinski, M; Friedrich, P; Xie, KX; Jin, Y; Ambigapathy, N; Nasca, E; Solak, N; Melito, GM; Vu, VD; Memon, AR; Schlachta, C; De Ribaupierre, S; Patel, R; Eagleson, R; Chen, XJ; Mächler, H; Kirschke, JS; de la Rosa, E; Christ, PF; Li, HB; Ellis, DG; Aizenberg, MR; Gatidis, S; Küstner, T; Shusharina, N; Heller, N; Andrearczyk, V; Depeursinge, A; Hatt, M; Sekuboyina, A; Löffler, MT; Liebl, H; Dorent, R; Vercauteren, T; Shapey, J; Kujawa, A; Cornelissen, S; Langenhuizen, P; Ben Hamadou, A; Rekik, A; Pujades, S; Boyer, E; Bolelli, F; Grana, C; Lumetti, L; Salehi, H; Ma, J; Zhang, Y; Gharleghi, R; Beier, S; Sowmya, A; Garza Villarreal, EA; Balducci, T; Angeles Valdez, D; Souza, R; Rittner, L; Frayne, R; Ji, Y; Ferrari, V; Chatterjee, S; Dubost, F; Schreiber, S; Mattern, H; Speck, O; Haehn, D; John, C; Nürnberger, A; Pedrosa, J; Ferreira, C; Aresta, G; Cunha, A; Campilho, A; Suter, Y; Garcia, J; Lalande, A; Vandenbossche, V; Van Oevelen, A; Duquesne, K; Mekhzoum, H; Vandemeulebroucke, J; Audenaert, E; Krebs, C; van Leeuwen, T; Vereecke, E; Heidemeyer, H; Röhrig, R; Hölzle, F; Badeli, V; Krieger, K; Gunzer, M; Chen, JX; van Meegdenburg, T; Dada, A; Balzer, M; Fragemann, J; Jonske, F; Rempe, M; Malorodov, S; Bahnsen, FH; Seibold, C; Jaus, A; Marinov, Z; Jaeger, PF; Stiefelhagen, R; Santos, AS; Lindo, M; Ferreira, A; Alves, V; Kamp, M; Abourayya, A; Nensa, F; Hörst, F; Brehmer, A; Heine, L; Hanusrichter, Y; Wessling, M; Dudda, M; Podleska, LE; Fink, MA; Keyl, J; Tserpes, K; Kim, MS; Elhabian, S; Lamecker, H; Zukic, D; Paniagua, B; Wachinger, C; Urschler, M; Duong, L; Wasserthal, J; Hoyer, PF; Basu, O; Maal, T; Witjes, MJH; Schiele, G; Chang, TC; Ahmadi, SA; Luo, P; Menze, B; Reyes, M; Deserno, TM; Davatzikos, C; Puladi, B; Fua, P; Yuille, AL; Kleesiek, J; Egger, J;

Publication
BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK

Abstract
Objectives: The shape is commonly used to describe the objects. State-of-the-art algorithms in medical imaging are predominantly diverging from computer vision, where voxel grids, meshes, point clouds, and implicit surface models are used. This is seen from the growing popularity of ShapeNet (51,300 models) and Princeton ModelNet (127,915 models). However, a large collection of anatomical shapes (e.g., bones, organs, vessels) and 3D models of surgical instruments is missing. Methods: We present MedShapeNet to translate data-driven vision algorithms to medical applications and to adapt state-of-the-art vision algorithms to medical problems. As a unique feature, we directly model the majority of shapes on the imaging data of real patients. We present use cases in classifying brain tumors, skull reconstructions, multi-class anatomy completion, education, and 3D printing. Results: By now, MedShapeNet includes 23 datasets with more than 100,000 shapes that are paired with annotations (ground truth). Our data is freely accessible via a web interface and a Python application programming interface and can be used for discriminative, reconstructive, and variational benchmarks as well as various applications in virtual, augmented, or mixed reality, and 3D printing. Conclusions: MedShapeNet contains medical shapes from anatomy and surgical instruments and will continue to collect data for benchmarks and applications. The project page is: https://medshapenet.ikim.nrw/.

2025

Fairness Analysis in Causal Models: An Application to Public Procurement

Authors
Teixeira, S; Nogueira, AR; Gama, J;

Publication
MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2023, PT II

Abstract
Data-driven decision models based on Artificial Intelligence (AI) have been widely used in the public and private sectors. These models present challenges and are intended to be fair, effective and transparent in public interest areas. Bias, fairness and government transparency are aspects that significantly impact the functioning of a democratic society. They shape the government's and its citizens' relationship, influencing trust, accountability, and the equitable treatment of individuals and groups. Data-driven decision models can be biased at several process stages, contributing to injustices. Our research purpose is to understand fairness in the use of causal discovery for public procurement. By analysing Portuguese public contracts data, we aim i) to predict the place of execution of public contracts using the PC algorithm with sp-mi, smc-chi(2) and mc-chi(2) conditional independence tests; ii) to analyse and compare the fairness in those scenarios using Predictive Parity Rate, Proportional Parity, Demographic Parity and Accuracy Parity metrics. By addressing fairness concerns, we pursue to enhance responsible data-driven decision models. We conclude that, in our case, fairness metrics make an assessment more local than global due to causality pathways. We also observe that the Proportional Parity metric is the one with the lowest variance among all metrics and one with the highest precision, and this reinforces the observation that the Agency category is the one that is furthest apart in terms of the proportion of the groups.

2025

CapyMOA: Efficient Machine Learning for Data Streams in Python

Authors
Gomes, HM; Lee, A; Gunasekara, N; Sun, Y; Cassales, GW; Liu, J; Heyden, M; Cerqueira, V; Bahri, M; Koh, YS; Pfahringer, B; Bifet, A;

Publication
CoRR

Abstract

2025

Contract Usage and Evolution in Android Mobile Applications

Authors
Ferreira, DR; Mendes, A; Ferreira, JF; Carreira, C;

Publication
39th European Conference on Object-Oriented Programming, ECOOP 2025, June 30 to July 2, 2025, Bergen, Norway

Abstract

2025

Identification and explanation of disinformation in wiki data streams

Authors
de Arriba-Pérez, F; García-Méndez, S; Leal, F; Malheiro, B; Burguillo, JC;

Publication
INTEGRATED COMPUTER-AIDED ENGINEERING

Abstract
Social media platforms, increasingly used as news sources for varied data analytics, have transformed how information is generated and disseminated. However, the unverified nature of this content raises concerns about trustworthiness and accuracy, potentially negatively impacting readers' critical judgment due to disinformation. This work aims to contribute to the automatic data quality validation field, addressing the rapid growth of online content on wiki pages. Our scalable solution includes stream-based data processing with feature engineering, feature analysis and selection, stream-based classification, and real-time explanation of prediction outcomes. The explainability dashboard is designed for the general public, who may need more specialized knowledge to interpret the model's prediction. Experimental results on two datasets attain approximately 90% values across all evaluation metrics, demonstrating robust and competitive performance compared to works in the literature. In summary, the system assists editors by reducing their effort and time in detecting disinformation.

  • 22
  • 4180