2025
Authors
Alonso-Diaz, A; Solla, M; Bakon, M; Sousa, J;
Publication
GEO-SPATIAL INFORMATION SCIENCE
Abstract
This paper presents a novel approach to improve the conversion of interferometric synthetic aperture radar (InSAR) ascending and descending orbit measurements into horizontal and vertical deformation components, explicitly considering SAR product characteristics (acquisition geometry, resolution, and positional accuracy). Conventional decomposition methods use square grids, inadequately addressing directional biases associated with satellite images characteristics, reducing measurement accuracy. It is proposed optimized alternative geometries - rectangle, hexagon, and double inverted isosceles trapezoid (diIT) - derived from theoretical analysis of scatterer influence areas for Sentinel-1 imagery and calibrated data from the European ground motion service (EGMS). Validation was conducted comparing results against global navigation satellite system (GNSS) ground-truth data. Accuracy was quantitatively evaluated using deformation velocity (DV) and average Euclidean distance (ED) metrics. Results demonstrated an average 25% improvement in DV detection over traditional square grids, with only minor trade-offs, such as lower scatterer density and sub-millimetric increases in error for hexagon and diIT geometries.
2025
Authors
Magalhães, M; Melo, M; Coelho, A; Bessa, M;
Publication
Comput. Graph.
Abstract
2025
Authors
Malta, S; Pinto, P; Fernández-Veiga, M;
Publication
JOURNAL OF NETWORK AND COMPUTER APPLICATIONS
Abstract
The advent of 5th Generation (5G) networks has introduced the strategy of network slicing as a paradigm shift, enabling the provision of services with distinct Quality of Service (QoS) requirements. The 5th Generation New Radio (5G NR) standard complies with the use cases Enhanced Mobile Broadband (eMBB), Ultra-Reliable Low Latency Communications (URLLC), and Massive Machine Type Communications (mMTC), which demand a dynamic adaptation of network slicing to meet the diverse traffic needs. This dynamic adaptation presents both a critical challenge and a significant opportunity to improve 5G network efficiency. This paper proposes a Deep Reinforcement Learning (DRL) agent that performs dynamic resource allocation in 5G wireless network slicing according to traffic requirements of the 5G use cases within two scenarios: eMBB with URLLC and eMBB with mMTC. The DRL agent evaluates the performance of different decoding schemes such as Orthogonal Multiple Access (OMA), Non-Orthogonal Multiple Access (NOMA), and Rate Splitting Multiple Access (RSMA) and applies the best decoding scheme in these scenarios under different network conditions. The DRL agent has been tested to maximize the sum rate in scenario eMBB with URLLC and to maximize the number of successfully decoded devices in scenario eMBB with mMTC, both with different combinations of number of devices, power gains and number of allocated frequencies. The results show that the DRL agent dynamically chooses the best decoding scheme and presents an efficiency in maximizing the sum rate and the decoded devices between 84% and 100% for both scenarios evaluated.
2025
Authors
Zabjesky, C; Barbosa, B; Neves, S;
Publication
Effective Marketing and Consumer Behavior Tactics for High-End Products
Abstract
The main aim of this chapter is to study the digital touchpoints influencing customers' decisions in the five-star hospitality industry. This chapter adopted a qualitative methodology in the form of semi-structured interviews. The findings suggest the preeminent role of online travel agencies and hotel websites as the two most powerful touchpoints influencing the decision-making of the customer and serving as the principal means of making the reservation at the hotel. It also stresses the growing influence of customer-owned touchpoints, particularly user-generated content, in influencing customer perception. This research emphasizes the significance of personalized engagement in influencing customer satisfaction and loyalty. Overall, the study presents practical managerial implications for hoteliers, offering insights on how to effectively interact with customers at each stage of their journey, thereby enhancing both service delivery and overall guest experience. © 2025, IGI Global Scientific Publishing. All rights reserved.
2025
Authors
Ferreira, L; Bias, E; Sousa, JJ; Matricardi, E; Pádua, L;
Publication
FOREST ECOLOGY AND MANAGEMENT
Abstract
Monitoring the impacts of selective logging in tropical forests remains challenging due to the reliance on labor intensive field surveys. This study relies on the use of pre- and post-logging airborne LiDAR data to provide a precise and scalable method for quantifying canopy disturbances, carried out within the Sustainable Management Plan for the Jamari National Forest in Rond & ocirc;nia. The analysis of the airborne LiDAR data revealed a significant increase in canopy gaps after logging (F= 63.5,p <0.001 ), with canopy gaps corresponding to an average increase of 3.9 +/- 0.4% relative to the total plot area due to logging activities. The mean canopy gap area per felled tree was 158.29 m(2) ( +/- 35.7). A strong positive correlation was found between canopy gaps that emerged after logging and the logged AGB (18.4 +/- 1.7Mg ha(-1) ). A significant reduction in mean canopy height was also observed, decreasing from 26.26 +/- 0.40 m before logging to 24.62 +/- 0.33 m after logging (F= 9.86,p= 0.005) . The mean canopy gap area shifted from 40.68 +/- 2.30 m(2) to 77.07 +/- 2.82 m(2). Furthermore, there was an increase of 14.6% in the total number of gaps. The average Gini coefficient was 0.50 +/- 0.02 before logging and 0.64 +/- 0.01 in the post-logging areas and the average total impact on the canopy was 16.6 +/- 1.5% of the selectively logged area. The results obtained using the proposed methodology were consistent with field observations, demonstrating high accuracy of LiDAR-detected impacts when compared with inventory and GNSS data. This high detection rate highlights the sensitivity of LiDAR point cloud data in capturing small structural changes. Compared to pre-logging conditions, the observed alterations demonstrate that LiDAR provides a more precise and scalable approach for quantifying the impact of selective logging on forest structure.
2025
Authors
Branco, JPTS; Macedo, P; Fidalgo, JN;
Publication
2025 21ST INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET, EEM
Abstract
Ensuring reliable and high-quality electricity service is critical for consumers and Distribution System Operators (DSO). The DSO's Plan for Development and Investment in the Distribution Network (PDIDN) plays a pivotal role in enhancing network reliability and resilience while balancing technical and financial aspects. This study proposes a novel probabilistic approach for quality-of-service (QoS) estimation in distribution systems, addressing the limitations of traditional deterministic methods. Leveraging Bayesian regression, specifically the Spike and Slab technique, the model incorporates prior knowledge to improve the prediction of key QoS indicators such as SAIDI, SAIFI, and TIEPI. Using historical network data, the model demonstrates superior predictive accuracy and robustness, offering realistic confidence intervals for strategic planning. This method enables informed investments, enhances regulatory compliance, and supports renewable integration. The findings underline the potential of probabilistic modeling in advancing QoS forecasting, encouraging its application in other areas of electric network management.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.