Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

2024

Characterizing indoor environmental quality in Portuguese office buildings for designing an intervention program

Authors
Felgueiras, F; Mourao, Z; Moreira, A; Gabriel, MF;

Publication
BUILDING AND ENVIRONMENT

Abstract
Intervention studies have been explored to identify actions to effectively remediate indoor environmental quality (IEQ) problems and to improve people's health, well-being, comfort, and productivity. This study assessed a comprehensive set of IEQ indicators related to ventilation, air pollution, thermal comfort, illuminance, and noise for the first time in Portuguese office buildings. The purpose was to derive evidence-based corrective measures for a further environmental intervention program. The study monitored and surveyed 15 open-space offices from six modern office buildings in Porto (Portugal) during a workday between September and December 2022. Illuminance was of most concern among the assessed IEQ indicators since the measured levels were below the minimum limit required in 27% of the evaluated workplaces. For CO2, although mean concentrations were below 1000 ppm, absolute values exceeding that level were consistently registered in 20% of the offices during the afternoon period. Mean levels of PM2.5, PM10, and ultrafine particles exceeding the WHO guidelines were found in 13%, 7%, and 7% of the offices, respectively. The assessed thermal comfort levels were typically neutral, corresponding to an estimated mean of 6% of dissatisfied people. Based on the findings, an intervention plan was designed to be implemented in the further stages of this work. The priority interventions to test include relocation of printers (PM source removal), optimisation of ventilation rates (using real-time data from CO2 sensors), adjustment of desk positions to improve illuminance, and introduction of indoor plants.

2024

Foundational Models for Pathology and Endoscopy Images: Application for Gastric Inflammation

Authors
Kerdegari, H; Higgins, K; Veselkov, D; Laponogov, I; Polaka, I; Coimbra, M; Pescino, JA; Leja, M; Dinis-Ribeiro, M; Kanonnikoff, TF; Veselkov, K;

Publication
DIAGNOSTICS

Abstract
The integration of artificial intelligence (AI) in medical diagnostics represents a significant advancement in managing upper gastrointestinal (GI) cancer, which is a major cause of global cancer mortality. Specifically for gastric cancer (GC), chronic inflammation causes changes in the mucosa such as atrophy, intestinal metaplasia (IM), dysplasia, and ultimately cancer. Early detection through endoscopic regular surveillance is essential for better outcomes. Foundation models (FMs), which are machine or deep learning models trained on diverse data and applicable to broad use cases, offer a promising solution to enhance the accuracy of endoscopy and its subsequent pathology image analysis. This review explores the recent advancements, applications, and challenges associated with FMs in endoscopy and pathology imaging. We started by elucidating the core principles and architectures underlying these models, including their training methodologies and the pivotal role of large-scale data in developing their predictive capabilities. Moreover, this work discusses emerging trends and future research directions, emphasizing the integration of multimodal data, the development of more robust and equitable models, and the potential for real-time diagnostic support. This review aims to provide a roadmap for researchers and practitioners in navigating the complexities of incorporating FMs into clinical practice for the prevention/management of GC cases, thereby improving patient outcomes.

2024

Strengthening the Resilience and Perseverance of Rural Accommodation Enterprises in the Iberian Depopulated Areas through Enterprise Architecture

Authors
Silveira, RA; Mamede, HS;

Publication
SUSTAINABILITY

Abstract
The research objective of this work is to develop and evaluate an enterprise architecture for rural accommodation in the Iberian Peninsula that responds to the demand of the remote labor market. Through an extensive literature review and the application of ArchiMate modeling, this study focuses on providing an enterprise architecture that promotes business resilience and environmental sustainability and boosts the local economy. The proposed enterprise architecture is remotely evaluated by experts, highlighting potential benefits, challenges, and areas for improvement. The results show that the proposed enterprise architecture has the potential to improve the long-term success of rural lodging businesses, enhance the customer experience, promote sustainability, and contribute to economic growth in rural areas through value exchange among stakeholders. The ArchiMate model provides a holistic perspective on stakeholder interactions and interoperability across all functional business areas: Customer Service, Product Management, Omnichannel Commerce, Human Resources, Business Strategy, Marketing, and Sustainability Management. The idea is to empower rural lodging businesses to create a better customer experience, achieve energy and environmental efficiency, contribute to local development, respond quickly to regulatory changes and compliance, and develop new revenue streams. The main goal is to improve offers, mitigate seasonal effects, and reverse the continuous cycle of decline in areas with low population density. Therefore, this ArchiMate modeling can be the initial basis for the digitization or expansion of the rural lodging industry in other geographies.

2024

Causes of Failure of Open Innovation Practices in Small- and Medium-Sized Enterprises

Authors
Almeida, F;

Publication
ADMINISTRATIVE SCIENCES

Abstract
The adoption of open innovation poses significant challenges that are important to explore. Studies in this field have mainly focused on exploring the causes of the failure of open innovation among large companies. This study addresses this research gap by employing a sample of 297 Portuguese small- and medium-sized enterprises (SMEs) to explore, through a quantitative study, whether the dimensions and causes of failure differ between large organizations and SMEs. A total of seven dimensions of causes of failure are considered, including strategy-related, organizational structure, organizational culture, knowledge and intellectual property management, management skill and action, resources, and interfirm collaboration. The findings reveal significant differences in four of these seven dimensions: the main causes of failure are related to the resources and management processes of open innovation in SMEs, while large companies face more challenges in the organizational structure and culture components. This study offers theoretical insights into the gaps in the literature to better understand the challenges facing open innovation. Furthermore, this study offers practical guidelines for SMEs to identify and mitigate these main obstacles, promoting better innovation management practices.

2024

LNDb v4: pulmonary nodule annotation from medical reports

Authors
Ferreira, CA; Sousa, C; Marques, ID; Sousa, P; Ramos, I; Coimbra, M; Campilho, A;

Publication
SCIENTIFIC DATA

Abstract
Given the high prevalence of lung cancer, an accurate diagnosis is crucial. In the diagnosis process, radiologists play an important role by examining numerous radiology exams to identify different types of nodules. To aid the clinicians' analytical efforts, computer-aided diagnosis can streamline the process of identifying pulmonary nodules. For this purpose, medical reports can serve as valuable sources for automatically retrieving image annotations. Our study focused on converting medical reports into nodule annotations, matching textual information with manually annotated data from the Lung Nodule Database (LNDb)-a comprehensive repository of lung scans and nodule annotations. As a result of this study, we have released a tabular data file containing information from 292 medical reports in the LNDb, along with files detailing nodule characteristics and corresponding matches to the manually annotated data. The objective is to enable further research studies in lung cancer by bridging the gap between existing reports and additional manual annotations that may be collected, thereby fostering discussions about the advantages and disadvantages between these two data types.

2024

Variable Message Signs in Traffic Management: A Systematic Review of User Behavior and Future Innovations

Authors
Lagoa, P; Galvao, T; Ferreira, MC;

Publication
INFRASTRUCTURES

Abstract
Effective traffic management is crucial in addressing the growing complexities of urban mobility, and variable message signs (VMSs) play a vital role in delivering real-time information to road users. Despite their widespread application, there is limited comprehensive understanding of how VMS influence user behavior and optimize traffic flow. This systematic literature review aims to address this gap by examining the effectiveness of VMS in shaping user interactions and enhancing traffic management systems. Using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) methodology, a thorough analysis of relevant studies was conducted to identify key factors influencing VMS impact, including message content and characteristics, complementary sources of information, user demographics, VMS location, and users' reliance on these signs. Additionally, the review explores the implications of displaying non-critical information on VMS and introduces virtual dynamic message signs (VDMSs) as an innovative approach for delivering public traveler information. The study identifies several research gaps, such as the integration of VMS with vehicle-to-everything (V2X) technologies, navigation systems, the need for validation in real-world scenarios, and understanding behavioral responses to non-critical information on VMS. This review highlights the importance of optimizing VMS for improved user engagement and traffic management, providing valuable insights and directions for future research in this evolving field.

  • 141
  • 4043