2024
Authors
Carvalho, M; Borges, A; Gavina, A; Duarte, L; Leite, J; Polidoro, MJ; Aleixo, SM; Dias, S;
Publication
Proceedings of the 16th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, IC3K 2024, Volume 1: KDIR, Porto, Portugal, November 17-19, 2024.
Abstract
The textile industry, a vital sector in global production, relies heavily on dyeing processes to meet stringent quality and consistency standards. This study addresses the challenge of identifying and mitigating non-conformities in dyeing patterns, such as stains, fading and coloration issues, through advanced data analysis and machine learning techniques. The authors applied Random Forest and Gradient Boosted Trees algorithms to a dataset provided by a Portuguese textile company, identifying key factors influencing dyeing non-conformities. Our models highlight critical features impacting non-conformities, offering predictive capabilities that allow for preemptive adjustments to the dyeing process. The results demonstrate significant potential for reducing non-conformities, improving efficiency and enhancing overall product quality.
2024
Authors
Pereira, S; Affatato, G; Bernardes, G; Moss, FC;
Publication
MATHEMATICS AND COMPUTATION IN MUSIC, MCM 2024
Abstract
We introduce a novel perspective on set-class analysis combining the DFT magnitudes with the music visualisation technique of wavescapes. With such a combination, we create a visual representation of a piece's multidimensional qualia, where different colours indicate saliency in chromaticity, diadicity, triadicity, octatonicity, diatonicity, and whole-tone quality. At the centre of our methods are: 1) the formal definition of the Fourier Qualia Space (FQS), 2) its particular ordering of DFT coefficients that delineate regions linked to different musical aesthetics, and 3) the mapping of such regions into a coloured wavescape. Furthermore, we demonstrate the intrinsic capability of the FQS to express qualia ambiguity and map it into a synopsis wavescape. Finally, we showcase the application of our methods by presenting a few analytical remarks on Bach's Three-part Invention BWV 795, Debussy's Reflets dans l'eau, andWebern's Four Pieces for Violin and Piano, Op. 7, No. 1, unveiling increasingly ambiguous wavescapes.
2024
Authors
Pinto, J; Filipe, V; Baptista, J; Oliveira, A; Pinto, T;
Publication
2024 IEEE 22ND MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, MELECON 2024
Abstract
The number of electric vehicles is increasing progressively for various reasons, including economic and environmental factors. There has also been a technological development regarding both the operation and charging of these vehicles. Therefore, it is very important to reinforce the charging infrastructure, which can be optimised through the application of computational tools. There are several approaches that should be considered when trying to find the best location for electric vehicles charging stations. In the literature, different methods are described that can be applied to address this specific issue, including optimisation methods and decision-making techniques such as multicriteria analysis. One of the possible limitations of these methods is that they may not consider all perspectives of the various entities involved, potentially resulting in solutions that do not fully represent the optimal outcome; nevertheless, they provide invaluable information that can be applied in the development of integrative models and potentially more comprehensive ones. This article presents a research and discussion on the most commonly used decision models for this issue, considering optimisation models and multi-criteria decision-making strategies for the adequate planning of EV charging station installation,taking into account the different perspectives of the involved entities.
2024
Authors
Silva, AD; Correia, MV; da Silva, HP;
Publication
2024 IEEE 22ND MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, MELECON 2024
Abstract
In our previous work, we explored a new invisible ECG biometrics approach that uses signals collected at the thighs using polymeric dry electrodes and sensors integrated into a toilet seat. However, the performance of the biometric templates remains unexplored. In this paper we evaluate how the ECG templates evolve, and the impact that potential changes may have on performance, using one case-study subject monitored over 31 days. This work is organized into two main parts. The first explores the morphological and physical traits of the subject throughout the 31 days based on data collected daily, three times per day at 6-hour intervals; in more than 80% of the sessions, all the signals were successfully acquired without showing noise nor movement artefacts. The second part is focused on evaluating the performance of Support Vector Machine (SVM) and Binary Convolutional Neural Network (BCNN) classifiers in the identification of the case study subject within a population of 10 individuals, covering an age range of (24 to 35 years); the top performer was the BCNN, achieving a perfect accuracy rate of 100% when tested on a group of two individuals.
2024
Authors
Sequeira, A; Santos, LP; Barbosa, LS;
Publication
MACHINE LEARNING-SCIENCE AND TECHNOLOGY
Abstract
This research explores the trainability of Parameterized Quantum Circuit-based policies in Reinforcement Learning, an area that has recently seen a surge in empirical exploration. While some studies suggest improved sample complexity using quantum gradient estimation, the efficient trainability of these policies remains an open question. Our findings reveal significant challenges, including standard Barren Plateaus with exponentially small gradients and gradient explosion. These phenomena depend on the type of basis-state partitioning and the mapping of these partitions onto actions. For a polynomial number of actions, a trainable window can be ensured with a polynomial number of measurements if a contiguous-like partitioning of basis-states is employed. These results are empirically validated in a multi-armed bandit environment.
2024
Authors
Ströhle, T; Campos, R; Jatowt, A;
Publication
INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS
Abstract
In our data-flooded age, an enormous amount of redundant, but also disparate textual data is collected on a daily basis on a wide variety of topics. Much of this information refers to documents related to the same theme, that is, different versions of the same document, or different documents discussing the same topic. Being aware of such differences turns out to be an important aspect for those who want to perform a comparative task. However, as documents increase in size and volume, keeping up-to-date, detecting, and summarizing relevant changes between different documents or versions of it becomes unfeasible. This motivates the rise of the contrastive or comparative summarization task, which attempts to summarize the text of different documents related to the same topic in a way that highlights the relevant differences between them. Our research aims to provide a systematic literature review on contrastive or comparative summarization, highlighting the different methods, data sets, metrics, and applications. Overall, we found that contrastive summarization is most commonly used in controversial news articles, controversial opinions or sentiments on a topic, and reviews of a product. Despite the great interest in the topic, we note that standard data sets, as well as a competitive task dedicated to this topic, are yet to come to be proposed, eventually impeding the emergence of new methods. Moreover, the great breakthrough of using deep learning-based language models for abstract summaries in contrastive summarization is still missing.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.