Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

2025

From fixed bottom nodes to mobile long term seabed robotic systems: the future of deep ocean observation

Authors
Martins, A; Almeida, J; Almeida, C; Silva, E;

Publication

Abstract
The deep ocean is vast and challenging to observe; however, it is key to knowledge of the sea and its impact on global climate. Fixed sea observing points (such as the EMSO observing nodes) provide a limited view and are complemented by expensive oceanographic campaigns with systems demanding high logistical requirements such as deep-sea ROVs.  These costs not only limit our capability for key ocean data collection in the deep but also introduce their own environmental costs.Emerging challenges in knowledge and pressure on the exploration of the deep ocean demand new technological solutions for monitoring and safeguarding the marine ecosystem.Innovative robotic technologies such as the TURTLE robotic deep-sea landers can combine long-term permanence at the seabed with mobility and dynamic reconfigurability in spatial and temporal deep-sea observation.Robotic systems of a heterogeneous nature (from conventional gliders, AUVs, or robotic landers) can be combined with standard and new sensing systems, such as bottom-deployed sensor nodes, moored systems, and cabled points when feasible.These systems can provide underwater localization services for the different assets, energy supply and high bandwidth data transfer with robotic docking stations for other mobile elements. An example of the synergy obtained with these new systems is the possibility of using robotic landers as carriers of EGIM (EMSO Generic Instrument Module) sensor payloads, providing power and data storage and flexibility in the deployment and recovery process.This approach, partly taken in the EU-funded Trident project to develop technical solutions for cost-effective and efficient observation of environmental impacts on deep seabed environments, allows for a substantial reduction in the operational and logistic requirements for deep-sea observation, greatly reducing the need for costly oceanographic campaigns or the use of expensive (economic and logistical) deep sea ROV systems.In this work, we present some of the new developments and discuss the transition from existing technological solutions to new ones integrating these recent developments.

2025

A Unified Approach to Video Anomaly Detection: Advancements in Feature Extraction, Weak Supervision, and Strategies for Class Imbalance

Authors
Barbosa, RZ; Oliveira, HS;

Publication
IEEE ACCESS

Abstract
This paper explores advancements in Video Anomaly Detection (VAD), combining theoretical insights with practical solutions to address model limitations. Through comprehensive experimental analysis, the study examines the role of feature representations, sampling strategies, and curriculum learning in enhancing VAD performance. Key findings include the impact of class imbalance on the Cross-Modal Awareness-Local Arousal (CMALA) architecture and the effectiveness of techniques like pseudo-curriculum learning in mitigating noisy classes, such as Car Accident. Novel strategies like the Sample-Batch Selection (SBS) dynamic segment selection and pre-trained image-text models, including Contrastive Language-Image Pre-training (CLIP) and ViTamin encoder, significantly improve anomaly detection. The research underscores the potential of multimodal VAD, highlighting the integration of audio and visual modalities and the development of multimodal fusion techniques. To support this evolution, the study proposes a Unified WorkStation 4 VAD (UWS4VAD) to streamline research workflows and introduces a new VAD benchmark incorporating multimodal data and textual information. The work envisions enhanced anomaly interpretation and performance by leveraging joint representation learning and Large Language Models (LLMs). The findings set the stage for future advancements, advocating for large-scale pre-training on audio-visual datasets and shifting toward a more integrated, multimodal approach to VADs. Source code of the project available at https://github.com/zuble/uws4vad

2025

Incremental Repair Feedback on Automated Assessment of Programming Assignments

Authors
Paiva, JC; Leal, JP; Figueira, A;

Publication
ELECTRONICS

Abstract
Automated assessment tools for programming assignments have become increasingly popular in computing education. These tools offer a cost-effective and highly available way to provide timely and consistent feedback to students. However, when evaluating a logically incorrect source code, there are some reasonable concerns about the formative gap in the feedback generated by such tools compared to that of human teaching assistants. A teaching assistant either pinpoints logical errors, describes how the program fails to perform the proposed task, or suggests possible ways to fix mistakes without revealing the correct code. On the other hand, automated assessment tools typically return a measure of the program's correctness, possibly backed by failing test cases and, only in a few cases, fixes to the program. In this paper, we introduce a tool, AsanasAssist, to generate formative feedback messages to students to repair functionality mistakes in the submitted source code based on the most similar algorithmic strategy solution. These suggestions are delivered with incremental levels of detail according to the student's needs, from identifying the block containing the error to displaying the correct source code. Furthermore, we evaluate how well the automatically generated messages provided by AsanasAssist match those provided by a human teaching assistant. The results demonstrate that the tool achieves feedback comparable to that of a human grader while being able to provide it just in time.

2025

Gamification in Digital Marketing for Boosting Tourist Destination Competitiveness: A Case Study

Authors
Garcia, JE; Pereira, B; Sousa, B; Fonseca, MJ;

Publication
Smart Innovation, Systems and Technologies

Abstract
In an increasingly competitive tourism landscape, digital marketing strategies must adapt to engage modern travelers effectively. This paper investigates the role of gamification in enhancing the competitiveness of tourist destinations, focusing specifically on Braga, Portugal. The study aims to evaluate how gamification can influence destination attractiveness, enhance tourist experiences, and inform decision-making processes. The study used a mixed-methods approach, combining qualitative and quantitative analyses. The qualitative component consisted of semi-structured interviews with key tourism stakeholders in Braga, revealing insights into the benefits and challenges of implementing gamification strategies. The quantitative analysis involved surveys conducted with tourists, assessing their perceptions of gamified elements and their influence on travel decisions. Findings indicate that tourists perceive gamification positively, particularly regarding features such as achievements, storytelling, and point systems, which significantly affect their travel choices. Stakeholders recognize the potential of gamification to boost tourist engagement and satisfaction, while also emphasizing the need to address implementation challenges. The study concludes that gamification can enhance the attractiveness and competitiveness of tourist destinations, though its success depends on strategic planning, resource allocation, and collaboration among stakeholders. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025.

2025

An Integrated and User-Friendly Platform for the Deployment of Explainable Artificial Intelligence Methods Applied to Face Recognition

Authors
Albuquerque, C; Neto, PC; Gonçalves, T; Sequeira, AF;

Publication
HCI for Cybersecurity, Privacy and Trust - 7th International Conference, HCI-CPT 2025, Held as Part of the 27th HCI International Conference, HCII 2025, Gothenburg, Sweden, June 22-27, 2025, Proceedings, Part II

Abstract
Face recognition technology, despite its advancements and increasing accuracy, still presents significant challenges in explainability and ethical concerns, especially when applied in sensitive domains such as surveillance, law enforcement, and access control. The opaque nature of deep learning models jeopardises transparency, bias, and user trust. Concurrently, the proliferation of web applications presents a unique opportunity to develop accessible and interactive tools for demonstrating and analysing these complex systems. These tools can facilitate model decision exploration with various images, aiding in bias mitigation or enhancing users’ trust by allowing them to see the model in action and understand its reasoning. We propose an explainable face recognition web application designed to support enrolment, identification, authentication, and verification while providing visual explanations through pixel-wise importance maps to clarify the model’s decision-making process. The system is built in compliance with the European Union General Data Protection Regulation, ensuring data privacy and user control over personal information. The application is also designed for scalability, capable of efficiently managing large datasets. Load tests conducted on databases containing up to 1,000,000 images confirm its efficiency. This scalability ensures robust performance and a seamless user experience even with database growth. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

2025

Urban Living Labs as Catalysts for Innovation: Advancing Urban Ecosystems within the Quintuple Helix Model

Authors
Almeida, F; Deutsch, N;

Publication
Urban Governance

Abstract

  • 109
  • 4235