Details
Name
Fábio Silva MoreiraRole
Senior ResearcherSince
18th February 2014
Nationality
PortugalCentre
Industrial Engineering and ManagementContacts
+351 22 209 4190
fabio.s.moreira@inesctec.pt
2025
Authors
Lunet, M; Fernandes, D; Neves-Moreira, F; Amorim, P;
Publication
Proceedings of the Genetic and Evolutionary Computation Conference
Abstract
2025
Authors
Gomes, R; Marques, A; Neves-Moreira, F; Netto, CA; Silva, RG; Amorim, P;
Publication
Processes
Abstract
2024
Authors
Neves Moreira, F; Amorim, P;
Publication
INTERNATIONAL JOURNAL OF PRODUCTION ECONOMICS
Abstract
Omnichannel retailers are reinventing stores to meet the growing demand of the online channel. Several retailers now use stores as supporting distribution centers to offer quicker Buy-Online-Pickup-In-Store (BOPS) and Ship-From-Store (SFS) services. They resort to in-store picking to serve online orders using existing assets. However, in-store picking operations require picker carts traveling through store aisles, competing for store space, and possibly harming the offline customer experience. To learn picking policies that acknowledge interactions between pickers and offline customers, we formalize a new problem called Dynamic In-store Picker Routing Problem (diPRP). This problem considers a picker that tries to pick online orders (seeking) while minimizing customer encounters (hiding) - preserving the offline customer experience. We model the problem as a Markov Decision Process (MDP) and solve it using a hybrid solution approach comprising mathematical programming and reinforcement learning components. Computational experiments on synthetic instances suggest that the algorithm converges to efficient policies. We apply our solution approach in the context of a large European retailer to assess the proposed policies regarding the number of orders picked and customers encountered. The learned policies are also tested in six different retail settings, demonstrating the flexibility of the proposed approach. Our work suggests that retailers should be able to scale the in-store picking of online orders without jeopardizing the experience of offline customers. The policies learned using the proposed solution approach reduced the number of customer encounters by up to 50%, compared to policies solely focused on picking orders. Thus, to pursue omnichannel strategies that adequately trade-off operational efficiency and customer experience, retailers cannot rely on actual simplistic picking strategies, such as choosing the shortest possible route.
2023
Authors
Moreira, FN; Amorim, P;
Publication
CoRR
Abstract
2022
Authors
Neves Moreira, F; Almada Lobo, B; Guimaraes, L; Amorim, P;
Publication
TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW
Abstract
In this paper, we explore the value of considering simultaneous pickups and deliveries inmulti-product inventory-routing problems both with deterministic and uncertain demand. Wepropose a multi-commodity, develop an exact branch-and-cut algorithm with patching heuristicsto efficiently tackle this problem, and provide insightful analyses based on optimal plans. Thesimplicity of the proposed approach is an important aspect, as it facilitates its usage in practice,opposed to complicated stochastic or probabilistic methods. The computational experimentssuggest that in the deterministic demand setting, pickups are mainly used to balance initialinventories, achieving an average total cost reduction of 1.1%, while transshipping 2.4% oftotal demand. Under uncertain demand, pickups are used extensively, achieving cost savings of up to 6.5% in specific settings. Overall, our sensitivity analysis shows that high inventory costsand high degrees of demand uncertainty drive the usage of pickups, which, counter-intuitively, are not desirable in every case
Supervised Thesis
2022
Author
Francisco Alexandre Lourenço Maia
Institution
UP-FEUP
2022
Author
João Rafael Gomes Varela
Institution
UP-FEUP
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.