Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

2023

TRANSFER-LEARNING ON LAND USE AND LAND COVER CLASSIFICATION

Authors
Carneiro, G; Teixeira, A; Cunha, A; Sousa, J;

Publication
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM

Abstract
In this study, we evaluated the use of small pre-trained 3D Convolutional Neural Networks (CNN) on land use and land cover (LULC) slide-window-based classification. We pre-trained the small models in a dataset with origin in the Eurosat dataset and evaluated the benefits of the transfer-learning plus fine-tuning for four different regions using Sentinel-2 L1C imagery (bands of 10 and 20m of spatial resolution), comparing the results to pre-trained models and trained from scratch. The models achieved an F1 Score of between 0.69-0.80 without significative change when pre-training the model. However, for small datasets, pre-training the model improved the classification by up to 3%.

2023

Mathematical and Statistical Modelling for Assessing COVID-19 Superspreader Contagion: Analysis of Geographical Heterogeneous Impacts from Public Events

Authors
Leal, C; Morgado, L; Oliveira, TA;

Publication
MATHEMATICS

Abstract
During a pandemic, public discussion and decision-making may be required in face of limited evidence. Data-grounded analysis can support decision-makers in such contexts, contributing to inform public policies. We present an empirical analysis method based on regression modelling and hypotheses testing to assess events for the possibility of occurrence of superspreading contagion with geographically heterogeneous impacts. We demonstrate the method by evaluating the case of the May 1st, 2020 Demonstration in Lisbon, Portugal, on regional growth patterns of COVID-19 cases. The methodology enabled concluding that the counties associated with the change in the growth pattern were those where likely means of travel to the demonstration were chartered buses or private cars, rather than subway or trains. Consequently, superspreading was likely due to travelling to/from the event, not from participating in it. The method is straightforward, prescribing systematic steps. Its application to events subject to media controversy enables extracting well founded conclusions, contributing to informed public discussion and decision-making, within a short time frame of the event occurring.

2023

Labelled Indoor Point Cloud Dataset for BIM Related Applications

Authors
Abreu, N; Souza, R; Pinto, A; Matos, A; Pires, M;

Publication
DATA

Abstract
BIM (building information modelling) has gained wider acceptance in the AEC (architecture, engineering, and construction) industry. Conversion from 3D point cloud data to vector BIM data remains a challenging and labour-intensive process, but particularly relevant during various stages of a project lifecycle. While the challenges associated with processing very large 3D point cloud datasets are widely known, there is a pressing need for intelligent geometric feature extraction and reconstruction algorithms for automated point cloud processing. Compared to outdoor scene reconstruction, indoor scenes are challenging since they usually contain high amounts of clutter. This dataset comprises the indoor point cloud obtained by scanning four different rooms (including a hallway): two office workspaces, a workshop, and a laboratory including a water tank. The scanned space is located at the Electrical and Computer Engineering department of the Faculty of Engineering of the University of Porto. The dataset is fully labelled, containing major structural elements like walls, floor, ceiling, windows, and doors, as well as furniture, movable objects, clutter, and scanning noise. The dataset also contains an as-built BIM that can be used as a reference, making it suitable for being used in Scan-to-BIM and Scan-vs-BIM applications. For demonstration purposes, a Scan-vs-BIM change detection application is described, detailing each of the main data processing steps. Dataset: https://doi.org/10.5281/zenodo.7948116 Dataset License: Creative Commons Attribution 4.0 International License (CC BY 4.0).

2023

Wearable Devices for Communication and Problem-Solving in the Context of Industry 4.0

Authors
Nunes, R; Pereira, R; Nogueira, P; Barroso, J; Rocha, T; Reis, A;

Publication
HCI INTERNATIONAL 2023 LATE BREAKING PAPERS, HCII 2023,PT IV

Abstract
This research focuses on developing a wearable device that aims to enhance problem-solving and communication abilities within the context of Industry 4.0. The wearable is being developed in the Continental Advanced Antenna, and it allows operators to notify material shortages on the manufacturing line and helps minimize workflow disturbance. The wearable gives a list of missing materials using context-aware computing, allowing operators to identify and prioritize the missing item quickly. We used the Quick and Dirty usability testing approach to ensure the device's usability and efficacy, allowing quick feedback and iterative modifications throughout the development process. Experienced consultants of project participated initial tests on the device and found that it has the potential to improve efficiency and communication in an industrial setting. However, further testing involving end users is necessary to optimize the device for the unique demands of the production environment. This paper offers valuable insights into the lessons learned from the project and proposes potential future research directions.

2023

IOT AND CLOUD-BASED TECHNOLOGIES FOR EFFICIENT USE OF RESOURCES IN ALMONDS CROP THE VERATECH PROJECT

Authors
Metrôlho, J; Reinaldo, F; Oliveira, A; Dionísio, R; Fidalgo, F; Santos, O; Candeias, A; Serpa, R; Rodrigues, P; Rebelo, J;

Publication
PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON PRODUCTION ECONOMICS AND PROJECT EVALUATION, ICOPEV 2022

Abstract
Efficient use of resources is a critical factor in almond crops. Technological solutions can significantly contribute to this purpose. The VeraTech project aims to explore the integration of sensors and cloud-based technologies in almond crops for efficient use of resources and reduction of environmental impact. It also makes available a set of relevant and impactful performance indicators in agricultural activity, which promote productivity gains supported by efficient use of resources. The proposed solution includes a sensor network in the almond crops, the transmission of data and its integration in the cloud, making this data available to be consumed, processed, and presented in the monitoring and alerts dashboard. In the current state of the development, several data are collected by sensors, transmitted over LoRaWAN, integrated using AWS IoT Core, and monitored and analysed through a cloud business analytics service. This project is implemented on a farm located in the Beira-Baixa region of Portugal and involves a partnership between Vera Cruz (owner of the farm), Veratech, and the Polytechnic Institute of Castelo Branco.

2023

En train d'oublier: Toward affective virtual environments

Authors
Forero, J; Mendes, M; Bernardes, G;

Publication
ACM International Conference Proceeding Series

Abstract
This study explores the development of intelligent affective virtual environments generated by bimodal emotion recognition techniques and multimodal feedback. A semantic and acoustic analysis predicts emotions conveyed by spoken language, fostering an expressive and transparent control structure. Textual contents and emotional predictions are mapped to virtual environments in real locations as audiovisual feedback. To demonstrate the application of this system, we developed a case study titled "En train d'oublier,"focusing on a train cemetery in Uyuni, Bolivia. The train cemetery holds historical significance as a site where abandoned trains symbolize the passage of time and the interaction between human activities and nature's reclamation. The space is transformed into an immersive and emotionally poetic experience through oral language and affective virtual environments that activate memories, as the system utilizes the transcribed text to synthesize images and modifies the musical output based on the predicted emotional states. The proposed bimodal emotion recognition techniques achieve 94% and 89% accuracy. The audiovisual mapping strategy allows for considering divergence in predictions generating an intended tension between the graphical and the musical representation. Using video and web art techniques, we experimented with the environments generated to create diverses poetic proposals. © 2023 ACM.

  • 651
  • 4390