2025
Authors
Rema, C; Costa, P; Silva, M; Pires, EJS;
Publication
ROBOTICS
Abstract
The advent of Industry 4.0, driven by automation and real-time data analysis, offers significant opportunities to revolutionize manufacturing, with mobile robots playing a central role in boosting productivity. In smart job shops, scheduling tasks involves not only assigning work to machines but also managing robot allocation and travel times, thus extending traditional problems like the Job Shop Scheduling Problem (JSSP) and Traveling Salesman Problem (TSP). Common solution methods include heuristics, metaheuristics, and hybrid methods. However, due to the complexity of these problems, existing models often struggle to provide efficient optimal solutions. Machine learning, particularly reinforcement learning (RL), presents a promising approach by learning from environmental interactions, offering effective solutions for task scheduling. This systematic literature review analyzes 71 papers published between 2014 and 2024, critically evaluating the current state of the art of task scheduling with mobile robots. The review identifies the increasing use of machine learning techniques and hybrid approaches to address more complex scenarios, thanks to their adaptability. Despite these advancements, challenges remain, including the integration of path planning and obstacle avoidance in the task scheduling problem, which is crucial for making these solutions stable and reliable for real-world applications and scaling for larger fleets of robots.
2025
Authors
Freitas, F; Brazdil, P; Soares, C;
Publication
INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS
Abstract
Many current AutoML platforms include a very large space of alternatives (the configuration space). This increases the probability of including the best one for any dataset but makes the task of identifying it for a new dataset more difficult. In this paper, we explore a method that can reduce a large configuration space to a significantly smaller one and so help to reduce the search time for the potentially best algorithm configuration, with limited risk of significant loss of predictive performance. We empirically validate the method with a large set of alternatives based on five ML algorithms with different sets of hyperparameters and one preprocessing method (feature selection). Our results show that it is possible to reduce the given search space by more than one order of magnitude, from a few thousands to a few hundred items. After reduction, the search for the best algorithm configuration is about one order of magnitude faster than on the original space without significant loss in predictive performance.
2025
Authors
Lourenço, A; Rodrigo, J; Gama, J; Marreiros, G;
Publication
CoRR
Abstract
2025
Authors
Andrade, PRD; De Araujo, SA; Cherri, AC; Lemos, FK;
Publication
TOP
Abstract
This paper studies the process of cutting steel bars in a truck suspension factory with the objective of reducing its inventory costs and material losses. A mathematical model is presented that focuses on decisions for a medium-term horizon (4 periods of 2 months). This approach addresses the one-dimensional 3-level integrated lot sizing and cutting stock problem, considering demand, inventory costs and stock level limits for bars (objects-level 1), springs (items-level 2) and spring bundles (final products-level 3), as well as the acquisition of bars as a decision variable. The solution to the proposed mathematical model is reached through an optimization package, using column generation along with a method for achieving integer solutions. The results obtained with real data demonstrate that the method provides significantly better solutions than those carried out at the company, whilst using reduced computational time. Additionally, the application of tests with random data enabled the analysis of both the effect of varying parameters in the solution, which provides managerial insights, and the overall performance of the method.
2025
Authors
Viegas, P; Bairrão, D; Gonçalves, L; Pereira, JC; Carvalho, LM; SimÕes, J; Silva, P; Dias, S;
Publication
IET Conference Proceedings
Abstract
A Renewable Energy Management System (REMS) is designed to enhance the operation and efficiency of renewable energy assets, such as wind and solar power, by addressing their inherent variability. Through integration with Supervisory Control and Data Acquisition (SCADA) systems, REMS facilitates real-time adjustments and forecast-based decisions, enabling grid security, optimizing energy dispatch, and maximizing economic benefits. This paper introduces a versatile active power control methodology for renewable energy plants, capable of operating across various time scales to address technical and market-driven requirements. The proposed framework processes inputs from power system measurements to generate forecasts using two distinct approaches, optimizing setpoints for energy dispatch and control processes. Four optimization methods—merit order, weighted allocation, proportional allocation, and linear optimization—are employed to maximize power utilization while adhering to system constraints. The approach is validated for two control intervals: 4 seconds, representing rapid response for converter-based resources, and 15 minutes, simulating broader operational adjustments for reserve provision programs. This dynamic and scalable control framework demonstrates its potential to enhance the management, efficiency, and sustainability of renewable energy systems. © The Institution of Engineering & Technology 2025.
2025
Authors
Rema, C; Sousa, A; Sobreira, H; Costa, P; Silva, MF;
Publication
2025 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC
Abstract
The rise of Industry 4.0 has revolutionized manufacturing by integrating real-time data analysis, artificial intelligence (AI), automation, and interconnected systems, enabling adaptive and resilient smart factories. Autonomous Mobile Robots (AMRs), with their advanced mobility and navigation capabilities, are a pillar of this transformation. However, their deployment in job shop environments adds complexity to the already challenging Job Shop Scheduling Problem (JSSP), expanding it to include task allocation, robot scheduling, and travel time optimization, creating a multi-faceted, non-deterministic polynomial-time hardness (NP-hard) problem. Traditional approaches such as heuristics, meta-heuristics, and mixed integer linear programming (MILP) are commonly used. Recent AI advancements, particularly large language models (LLM), have shown potential in addressing these scheduling challenges due to significant improvements in reasoning and decision-making from textual data. This paper examines the application of LLM to tackle scheduling complexities in smart job shops with mobile robots. Guided by tailored prompts inserted manually, LLM are employed to generate scheduling solutions, being these compared to an heuristic-based method. The results indicate that LLM currently have limitations in solving complex combinatorial problems, such as task scheduling with mobile robots. Due to issues with consistency and repeatability, they are not yet reliable enough for practical implementation in industrial environments. However, they offer a promising foundation for augmenting traditional approaches in the future.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.