Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

2023

The Acceptance of Artificial Intelligence-based Solutions by Store Assistants in Food Retail

Authors
Morais, SP; Rodrigues, JC;

Publication
Proceedings of the 29th International Conference on Engineering, Technology, and Innovation: Shaping the Future, ICE 2023

Abstract
The technological development of recent years has impacted the way companies, workers, and customers organize and interact with each other. Food retail stands out amongst the most affected sectors. New technologies, such as Artificial Intelligence (AI), lead to the emergence of a new retail concept, Smart Retailing, bringing benefits, not only for the retailer, but also for the consumer. In addition, they impact the jobs, in particular, store assistants' job. Despite the growing academic interest in these topics, the acceptance and impact of AI-based solutions on store assistants is scarcely studied. This work aims, therefore, to study the acceptance and perception of AI-based solutions by store assistants in food retail. Qualitative research was performed, having carried out 20 interviews with food retail store assistants that already work with AI-based solutions. Results show that store assistants are aware of what AI is and in which solutions it is used. They perceive these solutions as being beneficial for the performance of their duties, complementing their work instead of replacing them. They are willing to use these solutions and perceive them as being easy and intuitive to use. This study contributes with a starting point for future research on the topic. © 2023 IEEE.

2023

Application of machine learning in dementia diagnosis: A systematic literature review

Authors
Kantayeva, G; Lima, J; Pereira, AI;

Publication
HELIYON

Abstract
According to the World Health Organization forecast, over 55 million people worldwide have dementia, and about 10 million new cases are detected yearly. Early diagnosis is essential for patients to plan for the future and deal with the disease. Machine Learning algorithms allow us to solve the problems associated with early disease detection. This work attempts to identify the current relevance of the application of machine learning in dementia prediction in the scientific world and suggests open fields for future research. The literature review was conducted by combining bibliometric and content analysis of articles originating in a period of 20 years in the Scopus database. Twenty-seven thousand five hundred twenty papers were identified firstly, of which a limited number focused on machine learning in dementia diagnosis. After the exclusion process, 202 were selected, and 25 were chosen for analysis. The recent increasing interest in the past five years in the theme of machine learning in dementia shows that it is a relevant field for research with still open questions. The methods used to identify dementia or what features are used to identify or predict this disease are explored in this study. The literature review revealed that most studies used magnetic resonance imaging (MRI) and its types as the main feature, accompanied by demographic data such as age, gender, and the mini-mental state examination score (MMSE). Data are usually acquired from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Classification of Alzheimer's disease is more prevalent than prediction of Mild Cognitive Impairment (MCI) or their combination. The authors preferred machine learning algorithms such as SVM, Ensemble methods, and CNN because of their excellent performance and results in previous studies. However, most use not one machine-learning technique but a combination of techniques. Despite achieving good results in the studies considered, there are new concepts for future investigation declared by the authors and suggestions for improvements by employing promising methods with potentially significant results.

2023

Podcast "O Centro":um embrião para um espaço mediático galego-português

Authors
Pichel, José Ramon; Trigo, Luís;

Publication

Abstract

2023

Evaluating Post-hoc Interpretability with Intrinsic Interpretability

Authors
Amorim, JP; Abreu, PH; Santos, JAM; Müller, H;

Publication
CoRR

Abstract

2023

Privacy-Preserving Machine Learning on Apache Spark

Authors
Brito, CV; Ferreira, PG; Portela, BL; Oliveira, RC; Paulo, JT;

Publication
IEEE ACCESS

Abstract
The adoption of third-party machine learning (ML) cloud services is highly dependent on the security guarantees and the performance penalty they incur on workloads for model training and inference. This paper explores security/performance trade-offs for the distributed Apache Spark framework and its ML library. Concretely, we build upon a key insight: in specific deployment settings, one can reveal carefully chosen non-sensitive operations (e.g. statistical calculations). This allows us to considerably improve the performance of privacy-preserving solutions without exposing the protocol to pervasive ML attacks. In more detail, we propose Soteria, a system for distributed privacy-preserving ML that leverages Trusted Execution Environments (e.g. Intel SGX) to run computations over sensitive information in isolated containers (enclaves). Unlike previous work, where all ML-related computation is performed at trusted enclaves, we introduce a hybrid scheme, combining computation done inside and outside these enclaves. The experimental evaluation validates that our approach reduces the runtime of ML algorithms by up to 41% when compared to previous related work. Our protocol is accompanied by a security proof and a discussion regarding resilience against a wide spectrum of ML attacks.

2023

Deep Learning Approach for Seamless Navigation in Multi-View Streaming Applications

Authors
Costa, TS; Viana, P; Andrade, MT;

Publication
IEEE ACCESS

Abstract
Quality of Experience (QoE) in multi-view streaming systems is known to be severely affected by the latency associated with view-switching procedures. Anticipating the navigation intentions of the viewer on the multi-view scene could provide the means to greatly reduce such latency. The research work presented in this article builds on this premise by proposing a new predictive view-selection mechanism. A VGG16-inspired Convolutional Neural Network (CNN) is used to identify the viewer's focus of attention and determine which views would be most suited to be presented in the brief term, i.e., the near-term viewing intentions. This way, those views can be locally buffered before they are actually needed. To this aim, two datasets were used to evaluate the prediction performance and impact on latency, in particular when compared to the solution implemented in the previous version of our multi-view streaming system. Results obtained with this work translate into a generalized improvement in perceived QoE. A significant reduction in latency during view-switching procedures was effectively achieved. Moreover, results also demonstrated that the prediction of the user's visual interest was achieved with a high level of accuracy. An experimental platform was also established on which future predictive models can be integrated and compared with previously implemented models.

  • 599
  • 4375