2023
Authors
Marques, P; Padua, L; Sousa, JJ; Fernandes Silva, A;
Publication
REMOTE SENSING
Abstract
Global warming presents a significant threat to the sustainability of agricultural systems, demanding increased irrigation to mitigate the impacts of prolonged dry seasons. Efficient water management strategies, including deficit irrigation, have thus become essential, requiring continuous crop monitoring. However, conventional monitoring methods are laborious and time-consuming. This study investigates the potential of aerial imagery captured by unmanned aerial vehicles (UAVs) to predict critical water stress indicators-relative water content (RWC), midday leaf water potential (psi MD), stomatal conductance (gs)-as well as the pigment content (chlorophyll ab, chlorophyll a, chlorophyll b and carotenoids) of trees in an olive orchard. Both thermal and spectral vegetation indices are calculated and correlated using linear and exponential regression models. The results reveal that the thermal vegetation indices contrast in estimating the water stress indicators, with the Crop Water Stress Index (CWSI) demonstrating higher precision in predicting the RWC (R2 = 0.80), psi MD (R2 = 0.61) and gs (R2 = 0.72). Additionally, the Triangular Vegetation Index (TVI) shows superior accuracy in predicting the chlorophyll ab (R2 = 0.64) and chlorophyll a (R2 = 0.61), while the Modified Chlorophyll Absorption in Reflectance Index (MCARI) proves most effective for estimating the chlorophyll b (R2 = 0.52). This study emphasizes the potential of UAV-based multispectral and thermal infrared imagery in precision agriculture, enabling assessments of the water status and pigment content. Moreover, these results highlight the vital importance of this technology in optimising resource allocation and enhancing olive production, critical steps towards sustainable agriculture in the face of global warming.
2023
Authors
Ferreira-Martínez D.; Zacarias M.; Gonzalez K.; Ruiz-Ibinarriaga J.; Lopez-Aguera A.;
Publication
Proceedings of the 2nd International Conference on Water Energy Food and Sustainability Icowefs 2022
Abstract
In this paper the design of a Sustainability Plan for the Salve brewery is modelled. To support transition for decarbonization of the company ensuring a triple zero production (energy, waste, and transport), the critical points during the production process have been identified from a SWOT analysis. Using the CLEWs tools (through the OSeMOSYS software), five scenarios are designed and evaluated according to the company energetic needs. Both historical set of real consumption data of the company, as well as the growth expectations raised by the owners have served as the basis for the work. To simplify the decision making to the company, both investment and total associated costs as well as the corresponding CO2 emissions has been estimated in the period 2023–2030. As main results, an energetic scenario including the use of bagasse waste, the implementation of photovoltaic solar energy and avoiding the fossil fuels, allows to achieve the planned objective with an economic contribution assumable by the company. In addition, several potential business niches associated with the circular economy have been identified.
2023
Authors
Pinto, T;
Publication
ENERGIES
Abstract
2023
Authors
Martínez, MP; Paulo, J;
Publication
DAIS
Abstract
2023
Authors
Pinho, R; Veloso, R; Estevinho, MM; Rodrigues, T; Almada Lobo, B; Amorim Lopes, M; Freitas, T;
Publication
REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS
Abstract
Background and aims: currently, most endoscopy software only provides limited statistics of past procedures, while none allows patterns to be extrapolated. To overcome this need, the authors applied business analytic models to pre-dict future demand and the need for endoscopists in a ter-tiary hospital Endoscopy Unit. Methods: a query to the endoscopy database was per-formed to retrieve demand from 2015 to 2021. The graphi-cal inspection allowed inferring of trends and seasonality, perceiving the impact of the COVID-19 pandemic, and se-lecting the best forecasting models. Considering COVID-19's impact in the second quarter of 2020, data for esoph-agogastroduodenoscopy (EGD) and colonoscopy was estimated using linear regression of historical data. The actual demand in the first two quarters of 2022 was used to validate the models. Results: during the study period, 53,886 procedures were requested. The best forecasting models were: a) simple sea-sonal exponential smoothing for EGD, colonoscopy and percutaneous endoscopic gastrostomy (PEG); b) double ex-ponential smoothing for capsule endoscopy and deep en-teroscopy; and c) simple exponential smoothing for endo-scopic retrograde cholangiopancreatography (ERCP) and endoscopic ultrasound (EUS). The mean average percent-age error ranged from 6.1 % (EGD) to 33.5 % (deep en - teroscopy). Overall, 8,788 procedures were predicted for 2022. The actual demand in the first two quarters of 2022 was within the predicted range. Considering the usual time allocation for each technique, 3.2 full-time equivalent en-doscopists (40 hours-dedication to endoscopy) will be re-quired to perform all procedures in 2022. Conclusions: the incorporation of business analytics into the endoscopy software and clinical practice may enhance resource allocation, improving patient-focused deci-sion-making and healthcare quality.
2023
Authors
Correia, A; Guimaraes, D; Paredes, H; Fonseca, B; Paulino, D; Trigo, L; Brazdil, P; Schneider, D; Grover, A; Jameel, S;
Publication
IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS
Abstract
Visualizing and examining the intellectual landscape and evolution of scientific communities to support collaboration is crucial for multiple research purposes. In some cases, measuring similarities and matching patterns between research publication document sets can help to identify people with similar interests for building research collaboration networks and university-industry linkages. The premise of this work is assessing feasibility for resolving ambiguous cases in similarity detection to determine authorship with natural language processing (NLP) techniques so that crowdsourcing is applied only in instances that require human judgment. Using an NLP-crowdsourcing convergence strategy, we can reduce the costs of microtask crowdsourcing while saving time and maintaining disambiguation accuracy over large datasets. This article contributes a next-gen crowd-artificial intelligence framework that used an ensemble of term frequency-inverse document frequency and bidirectional encoder representation from transformers to obtain similarity rankings for pairs of scientific documents. A sequence of content-based similarity tasks was created using a crowd-powered interface for solving disambiguation problems. Our experimental results suggest that an adaptive NLP-crowdsourcing hybrid framework has advantages for inter-researcher similarity detection tasks where fully automatic algorithms provide unsatisfactory results, with the goal of helping researchers discover potential collaborators using data-driven approaches.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.