Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

2025

Designing and Developing a Fixed-Wing Tail-sitter Tethered VTOL UAV with Custom Autopilot: A MIMO H8 Robust Control Approach

Authors
Safaee, A; Moreira, AP; Aguiar, AP;

Publication
2025 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC

Abstract
This article presents the development of a tethered fixed-wing tail-sitter VTOL (Vertical Take-Off and Landing) Unmanned Aerial Vehicle system. The design focuses on improving energy efficiency by utilizing the wings to harness wind power, similar to a kite, while maintaining VTOL functionality. A distinguishing feature is the purpose-built autopilot system, with custom hardware and software components specifically engineered for this application. The study presents the system identification process for obtaining five MIMO (Multiple-Input Multiple-Output) transfer functions that characterize the dynamics between roll-yaw commands and responses, including the tether angle feedback. To address the inherent coupling effects and uncertainties in the system, robust mixed sensitivity (H-infinity) MIMO controllers are developed. The controllers were validated through both simulations and experimental flights, demonstrating effective performance in handling cross-coupling effects and maintaining stability under various operating conditions. According to flight test findings, the system can precisely manage the tether angle while adjusting for ground effect disturbances. This allows for accurate tethered navigation, a stable attitude, and the maintenance of an adequate yaw heading.

2025

Harnessing Speckle Optical Fiber Sensors through High-Frequency Interrogation with an Event-Based Camera

Authors
Lopes, T; Teixeira, J; Rocha, VV; Ferreira, TD; Monteiro, CS; Jorge, PAS; Silva, NA;

Publication
29TH INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS

Abstract
Despite their extreme sensitivity, speckle-based fiber optical sensors are typically limited by the camera frame rate and dynamic range. In this context, recent developments in event-based sensors make them a promising and affordable tool for high-speed interrogation for such class of sensors, offering a low-latency approach to detecting dynamic changes in illumination patterns, well-suited for fast interrogation with frequency response up to the MHz range. In this manuscript, we investigate the potential of using an event-based vision sensor (EVS) as an interrogator for a speckle-based optical fiber sensor operating at 532nm to detect vibrations induced by an off-the-shelf sound speaker. In contact with the fiber, these vibrations induce dynamic changes in the speckle pattern, which are tracked by the EVS and processed to construct temporal frames with timestamps below 100 mu s. Approximating the differential operator of the deformation in the linear regime, we show a successful reconstruction of the acoustic signal for two illustrative case studies: i)a single-frequency signal at 1.2 KHz and ii)a linear ramp between 300 Hz to 2.5 kHz. The results demonstrate the ability to accurately identify not only the fundamental frequencies but also their harmonics generated by the speaker up to 5 KHz, paving an innovative path to harness the potential of speckle-based sensors in multiple scenarios of optical metrology and dynamic sensing applications.

2025

Multimodal information fusion using pyramidal attention-based convolutions for underwater tri-dimensional scene reconstruction

Authors
Leite, PN; Pinto, AM;

Publication
INFORMATION FUSION

Abstract
Underwater environments pose unique challenges to optical systems due to physical phenomena that induce severe data degradation. Current imaging sensors rarely address these effects comprehensively, resulting in the need to integrate complementary information sources. This article presents a multimodal data fusion approach to combine information from diverse sensing modalities into a single dense and accurate tridimensional representation. The proposed fusiNg tExture with apparent motion information for underwater Scene recOnstruction (NESO) encoder-decoder network leverages motion perception principles to extract relative depth cues, fusing them with textured information through an early fusion strategy. Evaluated on the FLSea-Stereo dataset, NESO outperforms state-of-the-art methods by 58.7%. Dense depth maps are achieved using multi-stage skip connections with attention mechanisms that ensure propagation of key features across network levels. This representation is further enhanced by incorporating sparse but millimeter-precise depth measurements from active imaging techniques. A regression-based algorithm maps depth displacements between these heterogeneous point clouds, using the estimated curves to refine the dense NESO prediction. This approach achieves relative errors as low as 0.41% when reconstructing submerged anode structures, accounting for metric improvements of up to 0.1124 m relative to the initial measurements. Validation at the ATLANTIS Coastal Testbed demonstrates the effectiveness of this multimodal fusion approach in obtaining robust tri-dimensional representations in real underwater conditions.

2025

Discriminant analysis for a folded Watson distribution

Authors
Figueiredo, A; Figueiredo, F;

Publication
JOURNAL OF APPLIED STATISTICS

Abstract
When directional data fall in the positive orthant of the unit hypersphere, a folded directional distribution is preferred over a simple directional distribution for modeling the data. Since directional data, especially axial data, can be modeled using a Watson distribution, this paper considers a folded Watson distribution for such cases. We first address the parameter estimation of this distribution using maximum likelihood, which requires a numerical algorithm to solve the likelihood equations. We use the Expectation-Maximization (EM) algorithm to obtain these estimates and to analyze the properties of the concentration estimator through simulation. Next, we propose the Bayes rule for a folded Watson distribution and evaluate its performance through simulation in various scenarios, comparing it with the Bayes rule for the Watson distribution. Finally, we present examples using both simulated and real data available in the literature.

2025

Integrating Privacy by Design Principles into AI-Driven Systems for Human Activity and Health Monitoring

Authors
Almeida, R; Freitas, A; Silva, T; Dias, D; Lacroix, J; Lathauwer, ID; Marreiros, G; Conceição, L;

Publication
HCI for Cybersecurity, Privacy and Trust - 7th International Conference, HCI-CPT 2025, Held as Part of the 27th HCI International Conference, HCII 2025, Gothenburg, Sweden, June 22-27, 2025, Proceedings, Part II

Abstract
Personal data privacy is fundamental in human activity and health monitoring systems, with additional challenges posed by the integration of AI tools. For monitoring to be effective, the user needs to trust on the system, adopt and use it frequently. Besides data privacy requirements and regulatory compliance, transparency, explainability and accountability matter. By incorporating Privacy by Design principles into AI-driven systems to ensure GDPR alignment, this paper proposed a simple approach for embedding privacy-preserving mechanisms throughout the data lifecycle, from design to deployment and continuous monitoring and illustrate it with two use cases developing AI-Driven Systems for human activity and health monitoring in different contexts. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

2025

Leakage-Free Probabilistic Jasmin Programs

Authors
Almeida, JB; Firsov, D; Oliveira, T; Unruh, D;

Publication
PROCEEDINGS OF THE 14TH ACM SIGPLAN INTERNATIONAL CONFERENCE ON CERTIFIED PROGRAMS AND PROOFS, CPP 2025

Abstract
This paper presents a semantic characterization of leakage-freeness through timing side-channels for Jasmin programs. Our characterization covers probabilistic Jasmin programs that are not constant-time. In addition, we provide a characterization in terms of probabilistic relational Hoare logic and prove the equivalence between both definitions. We also prove that our new characterizations are compositional and relate our new definitions to existing ones from prior work, which could only be applied to deterministic programs. To provide practical evidence, we use the Jasmin framework to develop a rejection sampling algorithm and provide an EasyCrypt proof that ensures the algorithm's implementation is leakage-free while not being constant-time.

  • 43
  • 4235