2025
Authors
Pereira, T; Gadhoumi, K; Xiao, R;
Publication
FRONTIERS IN PHYSIOLOGY
Abstract
[No abstract available]
2025
Authors
Fernandes, L; Gonçalves, T; Matos, J; Nakayama, LF; Cardoso, JS;
Publication
Fairness of AI in Medical Imaging - Third International Workshop, FAIMI 2025, Held in Conjunction with MICCAI 2025, Daejeon, South Korea, September 23, 2025, Proceedings
Abstract
Diabetic retinopathy (DR) is a leading cause of vision loss in working-age adults. While screening reduces the risk of blindness, traditional imaging is often costly and inaccessible. Artificial intelligence (AI) algorithms present a scalable diagnostic solution, but concerns regarding fairness and generalization persist. This work evaluates the fairness and performance of image-trained models in DR prediction, as well as the impact of disentanglement as a bias mitigation technique, using the diverse mBRSET fundus dataset. Three models, ConvNeXt V2, DINOv2, and Swin V2, were trained on macula images to predict DR and sensitive attributes (SAs) (e.g., age and gender/sex). Fairness was assessed between subgroups of SAs, and disentanglement was applied to reduce bias. All models achieved high DR prediction performance in diagnosing (up to 94% AUROC) and could reasonably predict age and gender/sex (91% and 77% AUROC, respectively). Fairness assessment suggests disparities, such as a 10% AUROC gap between age groups in DINOv2. Disentangling SAs from DR prediction had varying results, depending on the model selected. Disentanglement improved DINOv2 performance (2% AUROC gain), but led to performance drops in ConvNeXt V2 and Swin V2 (7% and 3%, respectively). These findings highlight the complexity of disentangling fine-grained features in fundus imaging and emphasize the importance of fairness in medical imaging AI to ensure equitable and reliable healthcare solutions. © 2025 Elsevier B.V., All rights reserved.
2025
Authors
Reza, S; Ferreira, MC; Machado, JJM; Tavares, JMRS;
Publication
APPLIED SOFT COMPUTING
Abstract
Traffic state prediction is critical to decision-making in various traffic management applications. Despite significant advancements in Deep Learning (DL) models, such as Long Short-Term Memory (LSTM), Graph Neural Networks (GNN), and attention-based transformer models, multi-step predictions remain challenging. The state-of-the-art models face a common limitation: the predictions' accuracy decreases as the prediction horizon increases, a phenomenon known as error accumulation. In addition, with the arrival of non-recurrent events and external noise, the models fail to maintain good prediction accuracy. Deep Reinforcement Learning (DRL) has been widely applied to diverse tasks, including optimising intersection traffic signal control. However, its potential to address multi-step traffic prediction challenges remains underexplored. This study introduces an Actor-Critic-based adapted DRL method to explore the solution to the challenges associated with multi-step prediction. The Actor network makes predictions by capturing the temporal correlations of the data sequence, and the Critic network optimises the Actor by evaluating the prediction quality using Q-values. This novel combination of Supervised Learning and Reinforcement Learning (RL) paradigms, along with non-autoregressive modelling, helps the model to mitigate the error accumulation problem and increase its robustness to the arrival of non-recurrent events. It also introduces a Denoising Autoencoder to deal with external noise effectively. The proposed model was trained and evaluated on three benchmark traffic flow and speed datasets. Baseline multi-step prediction models were implemented for comparison based on performance metrics such as Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). The results reveal that the proposed method outperforms the baselines by achieving average improvements of 0.26 to 21.29% in terms of MAE and RMSE for up to 24 time steps of prediction length on the three used datasets, at the expense of relatively higher computational costs. On top of that, this adapted DRL approach outperforms traditional DRL models, such as Deep Deterministic Policy Gradient (DDPG), in accuracy and computational efficiency.
2025
Authors
Federico Calà; Mariana Magalhães; António Coelho; Antonio Lanata;
Publication
2025 IEEE 14th Global Conference on Consumer Electronics (GCCE)
Abstract
2025
Authors
Broy, M; Brucker, AD; Fantechi, A; Gleirscher, M; Havelund, K; Kuppe, MA; Mendes, A; Platzer, A; Ringert, JO; Sullivan, A;
Publication
FORMAL ASPECTS OF COMPUTING
Abstract
We focus on the integration of Formal Methods as mandatory theme in any Computer Science University curriculum. In particular, when considering the ACM Curriculum for Computer Science, the inclusion of Formal Methods as a mandatory Knowledge Area needs arguing for why and how does every computer science graduate benefit from such knowledge. We do not agree with the sentence While there is a belief that formal methods are important and they are growing in importance, we cannot state that every computer science graduate will need to use formal methods in their career. We argue that formal methods are and have to be an integral part of every computer science curriculum. Just as not all graduates will need to know how to work with databases either, it is still important for students to have a basic understanding of how data is stored and managed efficiently. The same way, students have to understand why and how formal methods work, what their formal background is, and how they are justified. No engineer should be ignorant of the foundations of their subject and the formal methods based on these. In this article, we aim at highlighting why every computer scientist needs to be familiar with formal methods. We argue that education in formal methods plays a key role by shaping students' programming mindset, fostering an appreciation for underlying principles, and encouraging the practice of thoughtful program
2025
Authors
Habib Ur Rahman Habib; Mahmoud Shahbazi;
Publication
Abstract
This paper presents an integrated analytical approach to assess the reliability of power electronic converters in Permanent Magnet Synchronous Generator (PMSG)-based wind farms under variable wind conditions. The study focuses on analyzing the impact of wake effect turbulences and thermal management on power converter reliability, driven by the thermal stress induced by fluctuating wind speeds on power converters. Through extensive simulations using FLORIS and MATLAB, the thermal behavior of converters in wind farms affected by wake interactions was examined to identify potential reliability issues. The methodology involved modeling an 80-turbine wind farm in FLORIS to simulate wake effects, processing high-resolution wind speed data in MATLAB to refine wind speed profiles, and using Simulink to simulate the thermal profiles of power electronics. The results of FLORIS simulations highlighted the variations in turbulence intensity (TI) and power output, while the MATLAB and Simulink models quantified critical thermal stresses in power converters, correlating the locations of the turbine rows with temperature fluctuations and potential failures. Machine learning models, including Gradient Boosting and Random Forest Regressor, were utilized to refine and predict the multi-objective reliability function. The findings underscore the importance of understanding and managing thermal dynamics to improve the reliability and operational resilience of the power converter, supporting sustainable wind farm operations in dynamically changing wind conditions.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.