Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

2024

Improved MOMI tuning method for integrating processes

Authors
Vrancic, D; Huba, M; Bisták, P; Oliveira, PM;

Publication
IFAC PAPERSONLINE

Abstract
Integrating processes can be found in various industries. The main characteristic of such processes is that a limited process input can cause an unlimited process output. In general, they are more difficult to control compared to stable processes. The recently developed Magnitude optimum multiple integration tuning method for integrating processes provides very good closed -loop responses. However, it uses a reference -weighting 2-DOF PI(D) controller structure where the weighting parameters for the P and D term of the controller are equal (therefore the user can only change one parameter). Another drawback of the existing method is that it needs to find the roots of the fourth -order algebraic equation. The method proposed here does not require finding these roots and provides better tracking compared to the original method while maintaining optimal disturbance rejection for different integrating process models.

2024

Abstract PO3-19-11: CINDERELLA Clinical Trial (NCT05196269): using artificial intelligence-driven healthcare to enhance breast cancer locoregional treatment decisions

Authors
Eduard-Alexandru Bonci; Orit Kaidar-Person; Marília Antunes; Oriana Ciani; Helena Cruz; Rosa Di Micco; Oreste Davide Gentilini; Nicole Rotmensz; Pedro Gouveia; Jörg Heil; Pawel Kabata; Nuno Freitas; Tiago Gonçalves; Miguel Romariz; Helena Montenegro; Hélder P. Oliveira; Jaime S. Cardoso; Henrique Martins; Daniela Lopes; Marta Martinho; Ludovica Borsoi; Elisabetta Listorti; Carlos Mavioso; Martin Mika; André Pfob; Timo Schinköthe; Giovani Silva; Maria-Joao Cardoso;

Publication
Cancer Research

Abstract
Abstract Background. Breast cancer treatment has improved overall survival rates, with different locoregional approaches offering patients similar locoregional control but variable aesthetic outcomes that may lead to disappointment and poor quality of life (QoL). There are no standardized methods for informing patients of the different therapies prior to intervention, nor validated tools for evaluation of aesthetics and patients' expectations. The CINDERELLA Project is based on years of research and developments of new healthcare technologies by various partners, aimed to provide an artificial intelligence (AI) tool to aid shared decision-making by showing breast cancer patients the predicted aesthetic outcomes of their locoregional treatment. The clinical trial will evaluate the use of this tool within an AI cloud-based platform approach (CINDERELLA App) versus a standard approach. We anticipate that the CINDERELLA App will lead to improved satisfaction, psychosocial well-being and health-related QoL while maintaining the quality of care and providing environmental and economic benefits. Trial design. CINDERELLA is an international multicentric interventional randomized controlled open-label clinical trial. Using the CINDERELLA App, the AI and Digital Health arm will provide patients with complete information about the proposed types of locoregional treatments and photographs of similar patients previously treated with the same techniques. The Control arm will follow the standard approach of each clinical site. Randomization will be conducted online using the digital health platform CANKADO, ensuring a balanced distribution of participants between the two groups. CANKADO is the underlying platform through which physicians control the patients' app content and conduct all data collection. Privacy, data protection and ethical principles in AI usage were taken into account. Eligibility criteria. Patients diagnosed with primary breast cancer without evidence of systemic disease. All patients must sign an informed consent and be able to use a web-based app autonomously or with home-based support. Specific aims. Primary objective: to assess the levels of agreement among patients' expectations regarding the aesthetic outcome before and 12 months after locoregional treatment. The trial will also evaluate the aesthetic outcome level of agreement between the AI evaluation tool and self-evaluation. Secondary objectives: health-related QoL (EQ-5D-5L and BREAST-Q ICHOM questionnaires) and resource consumption (e.g., time spent in the hospital, out-of-pocket expenses). The questionnaires and photographs will be applied prior to any treatment, at wound healing, at 6 and 12 months following the completion of locoregional therapy. Statistical methods. Wilcoxon signed rank test will be used to assess the intervention's impact on the agreement level between expectations and obtained results. Weighted Cohen's kappa will be calculated to measure the improvement in classifying aesthetic results with intervention. Statistical tests and/or bootstrap techniques will compare results between arms. A similarity measure will be calculated between self-evaluation and outcome obtained with the AI tool for each participant, and a beta regression model will be used to analyze the intervention's effect. Secondary objectives will be evaluated by scoring questionnaires based on provided guidelines. Target accrual. The clinical trial, led by Champalimaud Clinical Centre, will enroll a minimum of 515 patients in each arm between July 2023 and January 2025. Recruitment is currently open at five study sites in Germany, Israel, Italy, Poland and Portugal. The clinical trial is still open for further international study sites. Funding. European Union grant HORIZON-HLTH-2021-DISEASE-04-04 Agreement No. 101057389. Citation Format: Eduard-Alexandru Bonci, Orit Kaidar-Person, Marília Antunes, Oriana Ciani, Helena Cruz, Rosa Di Micco, Oreste Davide Gentilini, Nicole Rotmensz, Pedro Gouveia, Jörg Heil, Pawel Kabata, Nuno Freitas, Tiago Gonçalves, Miguel Romariz, Helena Montenegro, Hélder P. Oliveira, Jaime S. Cardoso, Henrique Martins, Daniela Lopes, Marta Martinho, Ludovica Borsoi, Elisabetta Listorti, Carlos Mavioso, Martin Mika, André Pfob, Timo Schinköthe, Giovani Silva, Maria-Joao Cardoso. CINDERELLA Clinical Trial (NCT05196269): using artificial intelligence-driven healthcare to enhance breast cancer locoregional treatment decisions [abstract]. In: Proceedings of the 2023 San Antonio Breast Cancer Symposium; 2023 Dec 5-9; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2024;84(9 Suppl):Abstract nr PO3-19-11.

2024

PlayField: An Adaptable Framework for Integrative Sports Data Analysis

Authors
Pinto, F; Lima, B;

Publication
Proceedings - 2024 IEEE/ACM International Conference on Big Data Computing, Applications and Technologies, BDCAT 2024

Abstract
As sports analytics evolve to include a broad spectrum of data from diverse sources, the challenge of integrating heterogeneous data becomes pronounced. Current methods struggle with flexibility and rapid adaptation to new data formats, risking data integrity and accuracy. This paper introduces PlayField, a framework designed to robustly handle diverse sports data through adaptable configuration and an automated API. PlayField ensures precise data integration and supports manual interventions for data integrity, making it essential for accurate and comprehensive sports analysis. A case study with ZeroZero demonstrates the framework's capability to improve data integration efficiency significantly, showcasing its potential for advanced analytics in sports. © 2024 IEEE.

2024

Energy-efficient job shop scheduling problem with transport resources considering speed adjustable resources

Authors
Fontes, DBMM; Homayouni, SM; Fernandes, JC;

Publication
INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH

Abstract
This work extends the energy-efficient job shop scheduling problem with transport resources by considering speed adjustable resources of two types, namely: the machines where the jobs are processed on and the vehicles that transport the jobs around the shop-floor. Therefore, the problem being considered involves determining, simultaneously, the processing speed of each production operation, the sequence of the production operations for each machine, the allocation of the transport tasks to vehicles, the travelling speed of each task for the empty and for the loaded legs, and the sequence of the transport tasks for each vehicle. Among the possible solutions, we are interested in those providing trade-offs between makespan and total energy consumption (Pareto solutions). To that end, we develop and solve a bi-objective mixed-integer linear programming model. In addition, due to problem complexity we also propose a multi-objective biased random key genetic algorithm that simultaneously evolves several populations. The computational experiments performed have show it to be effective and efficient, even in the presence of larger problem instances. Finally, we provide extensive time and energy trade-off analysis (Pareto front) to infer the advantages of considering speed adjustable machines and speed adjustable vehicles and provide general insights for the managers dealing with such a complex problem.

2024

A literature review of economic efficiency assessments using Data Envelopment Analysis

Authors
Camanho, AS; Silva, MC; Piran, FS; Lacerda, DP;

Publication
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH

Abstract
This paper presents a literature review on Data Envelopment Analysis assessments of economic efficiency, covering methodological developments and empirical applications. We review the seminal models for economic efficiency measurement, involving the optimization of cost, revenue, and profit. The applications of the different modelling approaches are also discussed. Based on a content analysis of papers published between 1978 and 2020 in various sectors, the main areas of study are identified, and the pathways of research developments are discussed. Most studies are based on disaggregated quantity and price data. In addition, the use of panel data is prevalent compared to cross-sectional studies. There is a preponderance of input -oriented studies focused on cost efficiency rather than revenue or profit efficiency. Informed by the historical evolution of economic efficiency assessments portrayed in this review, we suggest directions for future developments. (c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )

2024

Explainable Classification of Wiki Streams

Authors
García-Méndez, S; Leal, F; de Arriba-Pérez, F; Malheiro, B; Burguillo-Rial, JC;

Publication
INFORMATION SYSTEMS AND TECHNOLOGIES, VOL 1, WORLDCIST 2023

Abstract
Web 2.0 platforms, like wikis and social networks, rely on crowdsourced data and, as such, are prone to data manipulation by illintended contributors. This research proposes the transparent identification of wiki manipulators through the classification of contributors as benevolent or malevolent humans or bots, together with the explanation of the attributed class labels. The system comprises: (i) stream-based data pre-processing; (ii) incremental profiling; and (iii) online classification, evaluation and explanation. Particularly, the system profiles contributors and contributions by combining features directly collected with content- and side-based engineered features. The experimental results obtained with a real data set collected from Wikivoyage - a popular travel wiki - attained a 98.52% classification accuracy and 91.34% macro F-measure. In the end, this work seeks to address data reliability to prevent information detrimental and manipulation.

  • 170
  • 4074