Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

2024

Smart Stress Relief - An EPS@ISEP 2022 Project

Autores
Cifuentes, GR; Camps, J; do Nascimento, JL; Bode, JA; Duarte, AJ; Malheiro, B; Ribeiro, C; Justo, J; Silva, MF; Ferreira, P; Guedes, P;

Publicação
INFORMATION SYSTEMS AND TECHNOLOGIES, VOL 1, WORLDCIST 2023

Abstract
Mild is a smart stress relief solution created by DSTRS, an European Project Semester student team enrolled at the Instituto Superior de Engenharia do Porto in the spring of 2022. This paper details the research performed, concerning ethics, marketing, sustainability and state-of-the-art, the ideas, concept and design pursued, and the prototype assembled and tested by DSTRS. The designed kit comprises a bracelet, pair of earphones with case, and a mobile app. The bracelet reads the user heart beat and temperature to automatically detect early stress signs. The case and mobile app command the earphones to play sounds based on the user readings or on user demand. Moreover, the case includes a tactile distractor, a scent diffuser and vibrates. This innovative multi-sensory output, combining auditory, olfactory, tactile and vestibular stimulus, intends to sooth the user.

2024

A Performance Comparison between Different Industrial Real-Time Indoor Localization Systems for Mobile Platforms

Autores
Rebelo, PM; Lima, J; Soares, SP; Oliveira, PM; Sobreira, H; Costa, P;

Publicação
SENSORS

Abstract
The flexibility and versatility associated with autonomous mobile robots (AMR) have facilitated their integration into different types of industries and tasks. However, as the main objective of their implementation on the factory floor is to optimize processes and, consequently, the time associated with them, it is necessary to take into account the environment and congestion to which they are subjected. Localization, on the shop floor and in real time, is an important requirement to optimize the AMRs' trajectory management, thus avoiding livelocks and deadlocks during their movements in partnership with manual forklift operators and logistic trains. Threeof the most commonly used localization techniques in indoor environments (time of flight, angle of arrival, and time difference of arrival), as well as two of the most commonly used indoor localization methods in the industry (ultra-wideband, and ultrasound), are presented and compared in this paper. Furthermore, it identifies and compares three industrial indoor localization solutions: Qorvo, Eliko Kio, and Marvelmind, implemented in an industrial mobile platform, which is the main contribution of this paper. These solutions can be applied to both AMRs and other mobile platforms, such as forklifts and logistic trains. In terms of results, the Marvelmind system, which uses an ultrasound method, was the best solution.

2024

Brand Management and Metaverse: A Data Mining Exploratory Approach

Autores
Ferreira, RP; Brandão, A; Veloso, B;

Publicação
Smart Innovation, Systems and Technologies

Abstract
Integrating emerging technologies, such as AI, the Metaverse, and IoT, revolutionizes management and brand practices. Brands can create captivating virtual experiences within the metaverse, including virtual storefronts and interactive events. Scientific data on brand management in the metaverse must be improved due to the concept’s early-stage development. While virtual environments exist, they do not fully encompass the metaverse’s scope. So, this research bridges this gap by exploring the relationship between brand management and the metaverse, focusing on consumer perceptions and their contribution to brand equity in this virtual realm. Netnography with a data mining approach was the methodology followed in this paper. Data were extracted by a metaverse community on the Reddit platform and, in total, 696 posts and comments were analyzed from June 2022 until May 2023. The results highlighted a positive and favorable consumer perception of brand management in the metaverse reality. This research contributes to the emerging field of metaverse brand management, investigating the impact of consumer perceptions on brand equity. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024.

2024

Improved MOMI tuning method for integrating processes

Autores
Vrancic, D; Huba, M; Bisták, P; Oliveira, PM;

Publicação
IFAC PAPERSONLINE

Abstract
Integrating processes can be found in various industries. The main characteristic of such processes is that a limited process input can cause an unlimited process output. In general, they are more difficult to control compared to stable processes. The recently developed Magnitude optimum multiple integration tuning method for integrating processes provides very good closed -loop responses. However, it uses a reference -weighting 2-DOF PI(D) controller structure where the weighting parameters for the P and D term of the controller are equal (therefore the user can only change one parameter). Another drawback of the existing method is that it needs to find the roots of the fourth -order algebraic equation. The method proposed here does not require finding these roots and provides better tracking compared to the original method while maintaining optimal disturbance rejection for different integrating process models.

2024

Abstract PO3-19-11: CINDERELLA Clinical Trial (NCT05196269): using artificial intelligence-driven healthcare to enhance breast cancer locoregional treatment decisions

Autores
Eduard-Alexandru Bonci; Orit Kaidar-Person; Marília Antunes; Oriana Ciani; Helena Cruz; Rosa Di Micco; Oreste Davide Gentilini; Nicole Rotmensz; Pedro Gouveia; Jörg Heil; Pawel Kabata; Nuno Freitas; Tiago Gonçalves; Miguel Romariz; Helena Montenegro; Hélder P. Oliveira; Jaime S. Cardoso; Henrique Martins; Daniela Lopes; Marta Martinho; Ludovica Borsoi; Elisabetta Listorti; Carlos Mavioso; Martin Mika; André Pfob; Timo Schinköthe; Giovani Silva; Maria-Joao Cardoso;

Publicação
Cancer Research

Abstract
Abstract Background. Breast cancer treatment has improved overall survival rates, with different locoregional approaches offering patients similar locoregional control but variable aesthetic outcomes that may lead to disappointment and poor quality of life (QoL). There are no standardized methods for informing patients of the different therapies prior to intervention, nor validated tools for evaluation of aesthetics and patients' expectations. The CINDERELLA Project is based on years of research and developments of new healthcare technologies by various partners, aimed to provide an artificial intelligence (AI) tool to aid shared decision-making by showing breast cancer patients the predicted aesthetic outcomes of their locoregional treatment. The clinical trial will evaluate the use of this tool within an AI cloud-based platform approach (CINDERELLA App) versus a standard approach. We anticipate that the CINDERELLA App will lead to improved satisfaction, psychosocial well-being and health-related QoL while maintaining the quality of care and providing environmental and economic benefits. Trial design. CINDERELLA is an international multicentric interventional randomized controlled open-label clinical trial. Using the CINDERELLA App, the AI and Digital Health arm will provide patients with complete information about the proposed types of locoregional treatments and photographs of similar patients previously treated with the same techniques. The Control arm will follow the standard approach of each clinical site. Randomization will be conducted online using the digital health platform CANKADO, ensuring a balanced distribution of participants between the two groups. CANKADO is the underlying platform through which physicians control the patients' app content and conduct all data collection. Privacy, data protection and ethical principles in AI usage were taken into account. Eligibility criteria. Patients diagnosed with primary breast cancer without evidence of systemic disease. All patients must sign an informed consent and be able to use a web-based app autonomously or with home-based support. Specific aims. Primary objective: to assess the levels of agreement among patients' expectations regarding the aesthetic outcome before and 12 months after locoregional treatment. The trial will also evaluate the aesthetic outcome level of agreement between the AI evaluation tool and self-evaluation. Secondary objectives: health-related QoL (EQ-5D-5L and BREAST-Q ICHOM questionnaires) and resource consumption (e.g., time spent in the hospital, out-of-pocket expenses). The questionnaires and photographs will be applied prior to any treatment, at wound healing, at 6 and 12 months following the completion of locoregional therapy. Statistical methods. Wilcoxon signed rank test will be used to assess the intervention's impact on the agreement level between expectations and obtained results. Weighted Cohen's kappa will be calculated to measure the improvement in classifying aesthetic results with intervention. Statistical tests and/or bootstrap techniques will compare results between arms. A similarity measure will be calculated between self-evaluation and outcome obtained with the AI tool for each participant, and a beta regression model will be used to analyze the intervention's effect. Secondary objectives will be evaluated by scoring questionnaires based on provided guidelines. Target accrual. The clinical trial, led by Champalimaud Clinical Centre, will enroll a minimum of 515 patients in each arm between July 2023 and January 2025. Recruitment is currently open at five study sites in Germany, Israel, Italy, Poland and Portugal. The clinical trial is still open for further international study sites. Funding. European Union grant HORIZON-HLTH-2021-DISEASE-04-04 Agreement No. 101057389. Citation Format: Eduard-Alexandru Bonci, Orit Kaidar-Person, Marília Antunes, Oriana Ciani, Helena Cruz, Rosa Di Micco, Oreste Davide Gentilini, Nicole Rotmensz, Pedro Gouveia, Jörg Heil, Pawel Kabata, Nuno Freitas, Tiago Gonçalves, Miguel Romariz, Helena Montenegro, Hélder P. Oliveira, Jaime S. Cardoso, Henrique Martins, Daniela Lopes, Marta Martinho, Ludovica Borsoi, Elisabetta Listorti, Carlos Mavioso, Martin Mika, André Pfob, Timo Schinköthe, Giovani Silva, Maria-Joao Cardoso. CINDERELLA Clinical Trial (NCT05196269): using artificial intelligence-driven healthcare to enhance breast cancer locoregional treatment decisions [abstract]. In: Proceedings of the 2023 San Antonio Breast Cancer Symposium; 2023 Dec 5-9; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2024;84(9 Suppl):Abstract nr PO3-19-11.

2024

PlayField: An Adaptable Framework for Integrative Sports Data Analysis

Autores
Pinto, F; Lima, B;

Publicação
Proceedings - 2024 IEEE/ACM International Conference on Big Data Computing, Applications and Technologies, BDCAT 2024

Abstract
As sports analytics evolve to include a broad spectrum of data from diverse sources, the challenge of integrating heterogeneous data becomes pronounced. Current methods struggle with flexibility and rapid adaptation to new data formats, risking data integrity and accuracy. This paper introduces PlayField, a framework designed to robustly handle diverse sports data through adaptable configuration and an automated API. PlayField ensures precise data integration and supports manual interventions for data integrity, making it essential for accurate and comprehensive sports analysis. A case study with ZeroZero demonstrates the framework's capability to improve data integration efficiency significantly, showcasing its potential for advanced analytics in sports. © 2024 IEEE.

  • 170
  • 4076