2024
Authors
A. Pfob; E-A. Bonci; O. Kaidar-Person; M. Antunes; O. Ciani; H. Cruz; R. Di Micco; O.D. Gentilini; J. Heil; P. Kabata; M. Romariz; T. Gonçalves; H.G. Martins; L. Borsoi; M. Mika; N. Romem; T. Schinköthe; G. Silva; M. Bobowicz; M.J. Cardoso;
Publication
ESMO Open
Abstract
2024
Authors
Beck, D; Morgado, L; O'Shea, P;
Publication
IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES
Abstract
The educational metaverse promises fulfilling ambitions of immersive learning, leveraging technology-based presence alongside narrative and/or challenge-based deep mental absorption. Most reviews of immersive learning research were outcomes-focused, few considered the educational practices and strategies. These are necessary to provide theoretical and pedagogical frameworks to situate outcomes within a context where technology is in concert with educational approaches. We sought a broader perspective of the practices and strategies used in immersive learning environments, and conducted a mapping survey of reviews, identifying 47 studies. Extracted accounts of educational practices and strategies under thematic analysis yielded 45 strategies and 21 practices, visualized as a network clustered by conceptual proximity. Resulting clusters Active context, Collaboration, Engagement and Scaffolding, Presence, and Real and virtual multimedia learning expose the richness of practices and strategies within the field. The visualization maps the field, supporting decision-making when combining practices and strategies for using the metaverse in education, highlights which practices and strategies are supported by the literature, and the presence and absence of diversity within clusters.
2024
Authors
Mendonça, M; Figueira, A;
Publication
INFORMATICS-BASEL
Abstract
As social media (SM) becomes increasingly prevalent, its impact on society is expected to grow accordingly. While SM has brought positive transformations, it has also amplified pre-existing issues such as misinformation, echo chambers, manipulation, and propaganda. A thorough comprehension of this impact, aided by state-of-the-art analytical tools and by an awareness of societal biases and complexities, enables us to anticipate and mitigate the potential negative effects. One such tool is BERTopic, a novel deep-learning algorithm developed for Topic Mining, which has been shown to offer significant advantages over traditional methods like Latent Dirichlet Allocation (LDA), particularly in terms of its high modularity, which allows for extensive personalization at each stage of the topic modeling process. In this study, we hypothesize that BERTopic, when optimized for Twitter data, can provide a more coherent and stable topic modeling. We began by conducting a review of the literature on topic-mining approaches for short-text data. Using this knowledge, we explored the potential for optimizing BERTopic and analyzed its effectiveness. Our focus was on Twitter data spanning the two years of the 117th US Congress. We evaluated BERTopic's performance using coherence, perplexity, diversity, and stability scores, finding significant improvements over traditional methods and the default parameters for this tool. We discovered that improvements are possible in BERTopic's coherence and stability. We also identified the major topics of this Congress, which include abortion, student debt, and Judge Ketanji Brown Jackson. Additionally, we describe a simple application we developed for a better visualization of Congress topics.
2024
Authors
Correia A.;
Publication
CEUR Workshop Proceedings
Abstract
This research revolves around the potential challenges, opportunities, and strategies associated with human-centered generative artificial intelligence (AI) in the music compositional practice, emphasizing the role of metaphorical design in shaping musicians' expectations toward the adoption of generative AI in their everyday creative activities. Through a human-computer interaction (HCI) lens, this paper aims to discuss the cultural implications of the human-AI metaphorical design space for the seamless integration of intelligent algorithmic experiences in a manner that aligns with cultural values and realistic expectations of music creators while promoting informed policies, sociotechnical imaginaries, and culturally sensitive generative AI design strategies with focus on user-friendly interfaces that resonate with diverse music creation groups.
2024
Authors
Bakon, M; Teixeira, AC; Padua, L; Morais, R; Papco, J; Kubica, L; Rovnak, M; Perissin, D; Sousa, JJ;
Publication
REMOTE SENSING
Abstract
Synthetic aperture radar (SAR) technology has emerged as a pivotal tool in viticulture, offering unique capabilities for various applications. This study provides a comprehensive overview of the current state-of-the-art applications of SAR in viticulture, highlighting its significance in addressing key challenges and enhancing viticultural practices. The historical evolution and motivations behind SAR technology are also provided, along with a demonstration of its applications within viticulture, showcasing its effectiveness in various aspects of vineyard management, including delineating vineyard boundaries, assessing grapevine health, and optimizing irrigation strategies. Furthermore, future perspectives and trends in SAR applications in viticulture are discussed, including advancements in SAR technology, integration with other remote sensing techniques, and the potential for enhanced data analytics and decision support systems. Through this article, a comprehensive understanding of the role of SAR in viticulture is provided, along with inspiration for future research endeavors in this rapidly evolving field, contributing to the sustainable development and optimization of vineyard management practices.
2024
Authors
Brancaliao, L; Alvarez, M; Coelho, J; Conde, M; Costa, P; Goncalves, J;
Publication
2024 10TH INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES, CODIT 2024
Abstract
In this paper it is presented a Hardware-in-theloop (HIL) mobile robot programming approach, to be applied in a robotics educational context. The motivation to apply this approach is the fact that students can program the robots without access to the robot hardware, but still maintain some important closed loop control critical features, such as a realistic lag time and the possibility for a larger number of students to program at the same time. Therefore, the developed software is applied to the real hardware without any change. The HIL approach was applied to provide a simulation close to reality, once the processing occurs in the real robot processor and the actuation and sensorization inside the simulation, adding to the advantage to test the firmware avoiding damage in the physical robot.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.