Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

2025

Toward Musicologically-Informed Retrieval: Enhancing MEI with Computational Metadata

Authors
Carvalho, Nádia; Bernardes, Gilberto;

Publication

Abstract
We present a metadata enrichment framework for Music Encoding Initiative (MEI) files, featuring mid- to higher-level multimodal features to support content-driven (similarity) retrieval with semantic awareness across large collections. While traditional metadata captures basic bibliographic and structural elements, it often lacks the depth required for advanced retrieval tasks that rely on musical phrases, form, key or mode, idiosyncratic patterns, and textual topics. To address this, we propose a system that fosters the computational analysis and edition of MEI encodings at scale. Inserting extended metadata derived from computational analysis and heuristic rules lays the groundwork for more nuanced retrieval tools. A batch environment and a lightweight JavaScript web-based application propose a complementary workflow by offering large-scale annotations and an interactive environment for reviewing, validating, and refining MEI files' metadata. Development is informed by user-centered methodologies, including consultations with music editors and digital musicologists, and has been co-designed in the context of orally transmitted folk music traditions, ensuring that both the batch processes and interactive tools align with scholarly and domain-specific needs.

2025

The relationship between digital transformation and digital literacy - an explanatory model: Systematic literature review

Authors
Arnaud, J; São Mamede, H; Branco, FA;

Publication
F1000Research

Abstract
Digital transformation has been one of the main trends in organizations in recent years, and digital literacy is a critical factor in the success of this transformation. Digital transformation involves the use of digital technologies to improve an organization’s processes, products, and services. For this transformation to be successful, it is necessary for employees to have knowledge of and skills in digital technologies. Digital literacy allows employees to understand technologies and their applications, know how to use them efficiently and safely, evaluate and select the most appropriate digital tools for each task, and be prepared to deal with problems and challenges that arise in the digital environment. This study investigates the relationship between digital transformation and digital literacy through a Systematic Literature Review conducted in accordance with Kitchenham’s guidelines. A total of 54 articles, published from 2018, were analyzed from databases such as Scopus, Science Direct, IEEE and Springer. The results reveal that digital literacy significantly influences the success of digital transformation, particularly in areas such as employee adaptability, innovation capacity, and digital tool integration. Key mediating and moderating factors identified include organizational learning culture, leadership support, ongoing training programs, and technological infrastructure. Based on these findings, an explanatory model was developed that maps the interaction between these variables and their impact on digital transformation outcomes. The study offers practical implications for organizations seeking to enhance their digital maturity: investing in employee digital literacy development, aligning leadership strategies with digital initiatives, and fostering a supportive culture for digital adoption are crucial steps. Thus, this study is relevant because it seeks to understand how digital literacy can impact Digital Transformation in organizations and, through the construction of an explanatory model, allows the identification of variables that influence this relationship by developing strategies to improve the digital literacy of employees in organizations. © 2025 Elsevier B.V., All rights reserved.

2025

Forecasting Power Demand in Complex Buildings Using Machine Learning: A Shopping Center Case Study

Authors
Palley, B; Bernardo, H; Martins, JP; Rossetti, R;

Publication
TECHNOLOGICAL INNOVATION FOR AI-POWERED CYBER-PHYSICAL SYSTEMS, DOCEIS 2025

Abstract
Recent studies have focused on forecasting power demand in buildings to enhance energy management. However, the literature still lacks comparative analyses of power demand forecasting algorithms. In addition, more case studies involving different building typologies are needed, as each building exhibits distinct behavior and load profiles. This paper aims to develop machine learning models to forecast the power demand of a large shopping center in the northern region of Portugal. The main objective is to compare the performance of several machine learning models. The results are promising, demonstrating adequate performance even during most holidays.

2025

No Two Snowflakes Are Alike: Studying eBPF Libraries' Performance, Fidelity and Resource Usage

Authors
Machado, C; Giao, B; Amaro, S; Matos, M; Paulo, J; Esteves, T;

Publication
PROCEEDINGS OF THE 2025 3RD WORKSHOP ON EBPF AND KERNEL EXTENSIONS, EBPF 2025

Abstract
As different eBPF libraries keep emerging, developers are left with the hard task of choosing the right one. Until now, this choice has been based on functional requirements (e.g., programming language support, development workflow), while quantitative metrics have been left out of the equation. In this paper, we argue that efficiency metrics such as performance, resource usage, and data collection fidelity also need to be considered for making an informed decision. We show it through an experimental study comparing five popular libraries: bpftrace, BCC, libbpf, ebpf-go, and Aya. For each, we implement three representative eBPF-based tools and evaluate them under different storage I/O workloads. Our results show that each library has its own strengths and weaknesses, as their specific features lead to distinct trade-offs across the selected efficiency metrics. These results further motivate experimental studies to increase the community's understanding of the eBPF ecosystem.

2025

Computational Phrase Segmentation of Iberian Folk Traditions: An Optimized LBDM Model

Authors
Orouji, Amir Abbas; Carvalho, Nadia; Sá Pinto, António; Bernardes, Gilberto;

Publication

Abstract
Phrase segmentation is a fundamental preprocessing step for computational folk music similarity, specifically in identifying tune families within digital corpora. Furthermore, recent literature increasingly recognizes the need for tradition-specific frameworks that accommodate the structural idiosyncrasies of each tradition. In this context, this study presents a culturally informed adaptation of the established rule-based Local Boundary Detection Model (LBDM) algorithm to underrepresented Iberian folk repertoires. Our methodological enhancement expands the LBDM baseline, which traditionally analyzes rests, pitch intervals, and inter-onset duration functions to identify potential segmentation boundaries, by integrating a sub-structure surface repetition function coupled with an optimized peak-selection algorithm. Furthermore, we implement a genetic algorithm to maximize segmentation accuracy by weighting coefficients for each function while calibrating the meta-parameters of the peak-selection process. Empirical evaluation on the I-Folk digital corpus, comprising 802 symbolically encoded folk melodies from Portuguese and Spanish traditions, demonstrates improvements in segmentation F-measure of six and sixteen percentage points~(p.p.) relative to established baseline methodologies for Portuguese and Spanish repertoires, respectively.

2025

Simulator and on-road testing of truck platooning: a systematic review

Authors
Botelho, TC; Duarte, SP; Ferreira, MC; Ferreira, S; Lobo, A;

Publication
EUROPEAN TRANSPORT RESEARCH REVIEW

Abstract
The evolution of transport technologies, marked by integrating connectivity and automation, has led to innovative approaches such as truck platooning. This concept involves linking multiple trucks through automated driving and vehicle-to-vehicle communication, promising to revolutionize the freight industry by enhancing efficiency and reducing operational costs. This systematic review explores the current state of truck platooning testing literature, focusing on simulator and on-road tests. The objective is to identify key scenarios and requirements for successfully developing and implementing the truck platooning concept. Following the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA) guidelines, we searched the Web of Science and Scopus databases, leading to the inclusion of thirty pertinent articles encompassing simulation-based, on-road, and mixed-environment experiments. In addition to the type of testing environment, these articles were assorted into three groups corresponding to their main thematic scope, human-centered, technology-centered, and energy efficiency studies, each providing unique insights into core themes for the development of truck platooning. The results reveal a commonly preferred platoon formation consisting of three trucks maintaining a constant speed of 80 km/h and a stable distance of 10 m between them. Simulator-based studies have predominantly concentrated on human factors, examining driver behavior and interaction within the platooning framework. In contrast, on-road trials have yielded tangible data, offering a more technology-driven perspective and contributing practical insights to the field. While the literature on truck platooning has grown considerably, this review recognizes some limitations in the existing literature and suggests paths for future research. Overall, this systematic review provides valuable insights to the ongoing development of robust and effective truck platooning systems.

  • 155
  • 4312