2024
Authors
Mesquita, M; Simões, AC; Teles, V; Dalmarco, G;
Publication
Lecture Notes in Mechanical Engineering
Abstract
Companies are putting more emphasis on the customer experience, associating services with their physical products with the help of emerging technologies. At the same time, several actors participating in research and innovation projects, such as universities, research institutes, and service providers, are involved in the value co-creation process. Thus, this study describes how digitalisation and servitisation in the context of participation in research and innovation projects contributed to innovation in industrial companies’ business model (BM). Qualitative exploratory research took place, collecting data through interviews with twelve key actors in industrial companies. The interviewees were professionals in management and R&D areas and founders from nine European countries who participated in six research and innovation European projects. The exchange of knowledge and experiences between the different actors of the innovation ecosystem influences this. From a practical point of view, research provides managers of industrial companies with the best practices and describes the main changes observed in the BM Canvas. This study also contributes to categorising companies in terms of their service maturity by associating factors other than servitisation, such as digitalisation and the actors of the research and innovation projects. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.
2024
Authors
Villa, MP; Graca, A; Ferreira, M; Piga, A; Silveira, T; Segal, B; Cruz, N; Alves, JC; Crivellaro, M; Souza, R; Soldateli, M;
Publication
Oceans Conference Record (IEEE)
Abstract
This paper investigates the real-time tracking capabilities of the Long Baseline (LBL) acoustic tracking system, developed by INESC TEC, for near-shore monitoring applications with human divers. The study aims to determine the system's suitability for environmental monitoring under challenging conditions, such as very shallow water and areas close to the coastline, where acoustic multipath effects are prevalent and can cause significant measurement errors. To mitigate these errors, a two-stage outlier rejection algorithm was implemented. The algorithm's performance was evaluated by comparing the measurement data at each stage and assessing the reduction in erroneous readings. The tracking performance was evaluated based on accuracy and repeatability. Two dives were performed, during which positions marked using the developed system were compared with GNSS data. © 2024 IEEE.
2024
Authors
Penelas, G; Pinto, T; Reis, A; Barbosa, L; Barroso, J;
Publication
HCI International 2024 - Late Breaking Papers - 26th International Conference on Human-Computer Interaction, HCII 2024, Washington, DC, USA, June 29 - July 4, 2024, Proceedings, Part VIII
Abstract
This paper presents an interactive game designed to improve users’ experience related to driving behaviour, as well as to provide decision support in this context. This paper explores machine learning (ML) methods to enhance the decision-making and automation in a gaming environment. It examines various ML strategies, including supervised, unsupervised, and Reinforcement Learning (RL), emphasizing RL’s effectiveness in interactive environments and its combination with Deep Learning, culminating in Deep Reinforcement Learning (DRL) for intricate decision-making processes. By leveraging these concepts, a practical application considering a gaming scenario is presented, which replicates vehicle behaviour simulations from real-world driving scenarios. Ultimately, the objective of this research is to contribute to the ML and artificial intelligence (AI) fields by introducing methods that could transform the way player agents adapt and interact with the environment and other agents decisions, leading to more authentic and fluid gaming experiences. Additionally, by considering recreational and serious games as case studies, this work aims to demonstrate the versatility of these methods, providing a rich, dynamic environment for testing the adaptability and responsiveness, while can also offer a context for applying these advancements to simulate and solve real-world problems in the complex and dynamic domain of mobility. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.
2024
Authors
Pinto, A; Carvalho, C; Rodriguez, S; Simões, A; Carvalhais, C; Gonçalves, FJ; Santos, J;
Publication
Atlantis Highlights in Social Sciences, Education and Humanities - International Conference on Lifelong Education and Leadership for All (ICLEL 2023)
Abstract
2024
Authors
Ribeiro, P; Coelho, A; Campos, R;
Publication
IEEE ACCESS
Abstract
Unmanned Aerial Vehicles (UAVs) are versatile platforms for carrying communications nodes such as Wi-Fi Access Points and cellular Base Stations. Flying Networks (FNs) offer on-demand wireless connectivity where terrestrial networks are impractical or unsustainable. However, managing communications resources in FNs presents challenges, particularly in optimizing UAV placement to maximize Quality of Service (QoS) for Ground Users (GUs) while minimizing energy consumption, given the UAVs' limited battery life. Existing multi-UAV placement solutions primarily focus on maximizing coverage areas, assuming static UAV positions and uniform GU distribution, overlooking energy efficiency and heterogeneous QoS requirements. We propose the Sustainable multi-UAV Performance-aware Placement (SUPPLY) algorithm, which defines and optimizes UAV trajectories to reduce energy consumption while ensuring QoS based on Signal-to-Noise Ratio (SNR) in the links with GUs. Additionally, we introduce the Multi-UAV Energy Consumption (MUAVE) simulator to evaluate energy consumption. Using both MUAVE and ns-3 simulators, we evaluate SUPPLY in typical and random networking scenarios, focusing on energy consumption and network performance. Results show that SUPPLY reduces energy consumption by up to 25% with minimal impact on throughput and delay.
2024
Authors
Valina, L; Teixeira, B; Pinto, T; Vale, Z; Coelho, S; Fontes, S; Reis, A;
Publication
HCI International 2024 - Late Breaking Papers - 26th International Conference on Human-Computer Interaction, HCII 2024, Washington, DC, USA, June 29 - July 4, 2024, Proceedings, Part II
Abstract
Artificial Intelligence (AI) is now ubiquitous in daily life, significantly impacting society by supporting decision-making. However, in many application areas, understanding the rationale behind AI decisions is crucial, highlighting the need for explainable AI (XAI). AI algorithms often lack transparency, making it hard to understand their inner workings. This work presents an overview of XAI solutions for decision support in mobility context. It addresses the complexity of explaining decision support models by offering explanations in various formats tailored to different user profiles. By integrating language models, XAI models may generate texts with varying technical detail levels, aiding ethical AI deployment and bridging the gap between complex models and human interpretability. This work explores the need for flexible explanation formats, supporting varied user profiles with graphical, textual, and tabular explanations. By integrating natural language processing models personalized explanations that are accurate, understandable, and accessible to a diverse audience can be generated. This study ultimately aims to support the task of making XAI robust and user-friendly, boosting its widespread use and application. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.