2025
Autores
Antonelli, G; Libanio, D; De Groof, AJ; van der Sommen, F; Mascagni, P; Sinonquel, P; Abdelrahim, M; Ahmad, O; Berzin, T; Bhandari, P; Bretthauer, M; Coimbra, M; Dekker, E; Ebigbo, A; Eelbode, T; Frazzoni, L; Gross, SA; Ishihara, R; Kaminski, MF; Messmann, H; Mori, Y; Padoy, N; Parasa, S; Pilonis, ND; Renna, F; Repici, A; Simsek, C; Spadaccini, M; Bisschops, R; Bergman, JJGHM; Hassan, C; Ribeiro, MD;
Publicação
GUT
Abstract
Artificial intelligence (AI) holds significant potential for enhancing quality of gastrointestinal (GI) endoscopy, but the adoption of AI in clinical practice is hampered by the lack of rigorous standardisation and development methodology ensuring generalisability. The aim of the Quality Assessment of pre-clinical AI studies in Diagnostic Endoscopy (QUAIDE) Explanation and Checklist was to develop recommendations for standardised design and reporting of preclinical AI studies in GI endoscopy. The recommendations were developed based on a formal consensus approach with an international multidisciplinary panel of 32 experts among endoscopists and computer scientists. The Delphi methodology was employed to achieve consensus on statements, with a predetermined threshold of 80% agreement. A maximum three rounds of voting were permitted. Consensus was reached on 18 key recommendations, covering 6 key domains: data acquisition and annotation (6 statements), outcome reporting (3 statements), experimental setup and algorithm architecture (4 statements) and result presentation and interpretation (5 statements). QUAIDE provides recommendations on how to properly design (1. Methods, statements 1-14), present results (2. Results, statements 15-16) and integrate and interpret the obtained results (3. Discussion, statements 17-18). The QUAIDE framework offers practical guidance for authors, readers, editors and reviewers involved in AI preclinical studies in GI endoscopy, aiming at improving design and reporting, thereby promoting research standardisation and accelerating the translation of AI innovations into clinical practice.
2025
Autores
Dias, JT; Santos, A; Mamede, HS;
Publicação
AI and Learning Analytics in Distance Learning
Abstract
This chapter examines how Artificial Intelligence (AI) and Learning Analytics (LA) are transformingdistanceeducation, accelerated by the COVID-19 shift toe-learning. By using data from Learning Management Systems (LMS), these technologies can personalize learning, improve student retention, and automate tasks. AI, particularly machine learning, enables dynamic adaptation to student needs, while LA provides valuable insights for informed instructional decisions. However, ethical concerns, including data privacy and algorithmic bias, must be addressed to ensure equitable access and fair learning outcomes. The future of distance learning lies in responsible integration of AI and LA, creating immersive and inclusive educational experiences. © 2025 by IGI Global Scientific Publishing. All rights reserved.
2025
Autores
Brancalião L.; Alvarez M.; Coelho J.; Conde M.; Costa P.; Gonçalves J.;
Publicação
Lecture Notes in Educational Technology
Abstract
Robotic competitions have been popularly applied in the educational context, proving to be an excellent method for fostering student engagement and interest in science, technology, engineering, and math (STEM). In this context, this paper presents the application of mobile robots in a classroom competition, in order to encourage students to enhance mobile robotics concepts learning in a dynamic and collaborative environment. The mobile robot prototyping is presented, and the methodology, including the Hardware-in-the-loop approach applied in the classrooms, is also described, together with the competition rules and challenges proposed for the students. The results indicated an improvement in students’ motivation, teamwork, communication, and the development of technical skills, computational thinking, and problem-solving.
2025
Autores
Salinas, G; Sequeira, G; Rodriguez, A; Bispo, J; Paulino, N;
Publicação
2025 IEEE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS, IPDPSW
Abstract
The rapid proliferation of Edge AI applications demands efficient, low-power computing architectures tailored to specific workloads. The RISC-V ecosystem is a promising solution, and has led to a fast growth of implementations based on custom instructions extensions, but with varying degrees of functionality and support which may hinder easy adoption. In this paper, we extensively review existing RISC-V extensions targeting primarily the AI domain and respective compilation flows, highlighting challenges in deployment, usability, and compatibility. We further implement and provide usable containerized environments for two of these works. To address the identified challenges, we then propose an approach for lightweight early validation of custom instructions via source-to-source transformations, without need of compiler modifications. We target our own Single Instruction Multiple Data (SIMD) accelerator, which we integrate into a CORE-V cv32e40px baseline core through custom instructions, and versus which we achieve up to 11.9x speedup for matrix-vector operations.
2025
Autores
Marques A.; Coelho A.; Soares F.;
Publicação
2025 IEEE Kiel Powertech Powertech 2025
Abstract
This paper proposes a stochastic optimization model for industrial hubs to enable their participation in energy markets. The model aims to leverage the resources of multi-energy systems to minimize energy costs in the day-ahead market. It accounts for uncertainties in photovoltaic generation, electrical and heat demand, and outdoor temperatures. A comparison is made with a deterministic approach, along with an analysis of the impact of thermal storage and reserve market participation on costs and bidding strategies. The results show that the stochastic approach is more conservative than the deterministic, while the integration of thermal storage and reserve services help decrease costs.
2025
Autores
Patrício, C; Teixeira, LF; Neves, JC;
Publicação
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL
Abstract
The main challenges hindering the adoption of deep learning-based systems in clinical settings are the scarcity of annotated data and the lack of interpretability and trust in these systems. Concept Bottleneck Models (CBMs) offer inherent interpretability by constraining the final disease prediction on a set of human-understandable concepts. However, this inherent interpretability comes at the cost of greater annotation burden. Additionally, adding new concepts requires retraining the entire system. In this work, we introduce a novel two-step methodology that addresses both of these challenges. By simulating the two stages of a CBM, we utilize a pretrained Vision Language Model (VLM) to automatically predict clinical concepts, and an off-the-shelf Large Language Model (LLM) to generate disease diagnoses grounded on the predicted concepts. Furthermore, our approach supports test-time human intervention, enabling corrections to predicted concepts, which improves final diagnoses and enhances transparency in decision-making. We validate our approach on three skin lesion datasets, demonstrating that it outperforms traditional CBMs and state-of-the-art explainable methods, all without requiring any training and utilizing only a few annotated examples. The code is available at https://github.com/CristianoPatricio/2step-concept-based-skin-diagnosis.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.