Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

José Lima received the M.Sc. and PhD in Electrical and Computer Engineering on Faculty of Engineering of University of Porto, Portugal in 2001 and 2009. He joined the Polytechnic Institute of Bragança in 2002, and currently he is a Coordinator Professor and head of the Electrical Engineering Department of that school. He is also a vice coordinator of the Research Centre in Digitalization and Intelligent Robotics, and Member of the coordination council of the Centre for Robotics in Industry and Intelligent Systems group of the INESC TEC (Institute for Systems and Computer Engineering of Porto, Portugal). He has published more than 150 papers in international scientific journals and conference proceedings. In addition, he participated and juried some autonomous mobile robotics competitions and developed industrial applications. Moreover, his research interests are in the field of mobile robotics, simulation and IoT. He participated as researcher or PI in some national, FP7 and H2020 funded projects. He supervised more than 60 Master degree students and is actually supervising 8 PhD.

Interest
Topics
Details

Details

  • Name

    José Lima
  • Role

    External Research Collaborator
  • Since

    01st June 2009
010
Publications

2025

Efficient multi-robot path planning in real environments: a centralized coordination system

Authors
Matos, DM; Costa, P; Sobreira, H; Valente, A; Lima, J;

Publication
INTERNATIONAL JOURNAL OF INTELLIGENT ROBOTICS AND APPLICATIONS

Abstract
With the increasing adoption of mobile robots for transporting components across several locations in industries, congestion problems appear if the movement of these robots is not correctly planned. This paper introduces a fleet management system where a central agent coordinates, plans, and supervises the fleet, mitigating the risk of deadlocks and addressing issues related to delays, deviations between the planned paths and reality, and delays in communication. The system uses the TEA* graph-based path planning algorithm to plan the paths of each agent. In conjunction with the TEA* algorithm, the concepts of supervision and graph-based environment representation are introduced. The system is based on ROS framework and allows each robot to maintain its autonomy, particularly in control and localization, while aligning its path with the plan from the central agent. The effectiveness of the proposed fleet manager is demonstrated in a real scenario where robots operate on a shop floor, showing its successful implementation.

2025

Systematic review of predictive maintenance practices in the manufacturing sector

Authors
Benhanifia, A; Ben Cheikh, Z; Oliveira, PM; Valente, A; Lima, J;

Publication
INTELLIGENT SYSTEMS WITH APPLICATIONS

Abstract
Predictive maintenance (PDM) is emerging as a strong transformative tool within Industry 4.0, enabling significant improvements in the sustainability and efficiency of manufacturing processes. This in-depth literature review, which follows the PRISMA 2020 framework, examines how PDM is being implemented in several areas of the manufacturing industry, focusing on how it is taking advantage of technological advances such as artificial intelligence (AI) and the Internet of Things (IoT). The presented in-depth evaluation of the technological principles, implementation methods, economic consequences, and operational improvements based on academic and industrial sources and new innovations is performed. According to the studies, integrating CDM can significantly increase machine uptime and reliability while reducing maintenance costs. In addition, the transition to PDM systems that use real-time data to predict faults and plan maintenance more accurately holds out promising prospects. However, there are still gaps in the overall methodologies for measuring the return on investment of PDM implementations, suggesting an essential research direction.

2025

A Machine Learning Approach for Enhanced Glucose Prediction in Biosensors

Authors
Abreu, A; Oliveira, DD; Vinagre, I; Cavouras, D; Alves, JA; Pereira, AI; Lima, J; Moreira, FTC;

Publication
CHEMOSENSORS

Abstract
The detection of glucose is crucial for diagnosing diseases such as diabetes and enables timely medical intervention. In this study, a disposable enzymatic screen-printed electrode electrochemical biosensor enhanced with machine learning (ML) for quantifying glucose in serum is presented. The platinum working surface was modified by chemical adsorption with biographene (BGr) and glucose oxidase, and the enzyme was encapsulated in polydopamine (PDP) by electropolymerisation. Electrochemical characterisation and morphological analysis (scanning and transmission electron microscopy) confirmed the modifications. Calibration curves in Cormay serum (CS) and selectivity tests with chronoamperometry were used to evaluate the biosensor's performance. Non-linear ML regression algorithms for modelling glucose concentration and calibration parameters were tested to find the best-fit model for accurate predictions. The biosensor with BGr and enzyme encapsulation showed excellent performance with a linear range of 0.75-40 mM, a correlation of 0.988, and a detection limit of 0.078 mM. Of the algorithms tested, the decision tree accurately predicted calibration parameters and achieved a coefficient of determination above 0.9 for most metrics. Multilayer perceptron models effectively predicted glucose concentration with a coefficient of determination of 0.828, demonstrating the synergy of biosensor technology and ML for reliable glucose detection.

2025

An Over-Actuated Hexacopter Tilt-Rotor UAV Prototype for Agriculture of Precision: Modeling and Control

Authors
Pimentel, GO; dos Santos, MF; Lima, J; Mercorelli, P; Fernandes, FM;

Publication
SENSORS

Abstract
This paper focuses on the modeling, control, and simulation of an over-actuated hexacopter tilt-rotor (HTR). This configuration implies that two of the six actuators are independently tilted using servomotors, which provide high maneuverability and reliability. This approach is predicted to maintain zero pitch throughout the trajectory and is expected to improve the aircraft's steering accuracy. This arrangement is particularly beneficial for precision agriculture (PA) applications where accurate monitoring and management of crops are critical. The enhanced maneuverability allows for precise navigation in complex vineyard environments, enabling the unmanned aerial vehicle (UAV) to perform tasks such as aerial imaging and crop health monitoring. The employed control architecture consists of cascaded proportional (P)-proportional, integral and derivative (PID) controllers using the successive loop closure (SLC) method on the five controlled degrees of freedom (DoFs). Simulated results using Gazebo demonstrate that the HTR achieves stability and maneuverability throughout the flight path, significantly improving precision agriculture practices. Furthermore, a comparison of the HTR with a traditional hexacopter validates the proposed approach.

2024

Angle Assessment for Upper Limb Rehabilitation: A Novel Light Detection and Ranging (LiDAR)-Based Approach

Authors
Klein, LC; Chellal, AA; Grilo, V; Braun, J; Gonçalves, J; Pacheco, MF; Fernandes, FP; Monteiro, FC; Lima, J;

Publication
SENSORS

Abstract
The accurate measurement of joint angles during patient rehabilitation is crucial for informed decision making by physiotherapists. Presently, visual inspection stands as one of the prevalent methods for angle assessment. Although it could appear the most straightforward way to assess the angles, it presents a problem related to the high susceptibility to error in the angle estimation. In light of this, this study investigates the possibility of using a new approach to angle calculation: a hybrid approach leveraging both a camera and LiDAR technology, merging image data with point cloud information. This method employs AI-driven techniques to identify the individual and their joints, utilizing the cloud-point data for angle computation. The tests, considering different exercises with different perspectives and distances, showed a slight improvement compared to using YOLO v7 for angle calculation. However, the improvement comes with higher system costs when compared with other image-based approaches due to the necessity of equipment such as LiDAR and a loss of fluidity during the exercise performance. Therefore, the cost-benefit of the proposed approach could be questionable. Nonetheless, the results hint at a promising field for further exploration and the potential viability of using the proposed methodology.

Supervised
thesis

2021

Sistema Inteligente de Deteção de Pessoas para Robôs Móveis Autónomos de Desinfeção

Author
Hugo Lima Mendonça

Institution
IES_Outra-IES_Outra

2021

Simulation and Planning of a 3D Spray Painting Robotic System

Author
João Marcelo Casanova Almeida Tomé Santos

Institution
IES_Outra-IES_Outra

2021

Articulação Modular para Braços Robóticos

Author
Marco António Mendonça Rocha

Institution
IES_Outra-IES_Outra

2021

Application of Lean methodologies in Information Security processes improvement

Author
Francisco Ribeiro Pereira da Silva

Institution
IES_Outra-IES_Outra

Sistema Inteligente de Gestão de Energia Elétrica - Automação de uma habitação

Author
Pedro Gonçalo Guedes Lopes Praça

Institution
IPB