Detalhes
Nome
José LimaCargo
Investigador Colaborador ExternoDesde
01 junho 2009
Nacionalidade
PortugalCentro
Robótica Industrial e Sistemas InteligentesContactos
+351220413317
jose.lima@inesctec.pt
2025
Autores
Abreu, A; Oliveira, DD; Vinagre, I; Cavouras, D; Alves, JA; Pereira, AI; Lima, J; Moreira, FTC;
Publicação
CHEMOSENSORS
Abstract
The detection of glucose is crucial for diagnosing diseases such as diabetes and enables timely medical intervention. In this study, a disposable enzymatic screen-printed electrode electrochemical biosensor enhanced with machine learning (ML) for quantifying glucose in serum is presented. The platinum working surface was modified by chemical adsorption with biographene (BGr) and glucose oxidase, and the enzyme was encapsulated in polydopamine (PDP) by electropolymerisation. Electrochemical characterisation and morphological analysis (scanning and transmission electron microscopy) confirmed the modifications. Calibration curves in Cormay serum (CS) and selectivity tests with chronoamperometry were used to evaluate the biosensor's performance. Non-linear ML regression algorithms for modelling glucose concentration and calibration parameters were tested to find the best-fit model for accurate predictions. The biosensor with BGr and enzyme encapsulation showed excellent performance with a linear range of 0.75-40 mM, a correlation of 0.988, and a detection limit of 0.078 mM. Of the algorithms tested, the decision tree accurately predicted calibration parameters and achieved a coefficient of determination above 0.9 for most metrics. Multilayer perceptron models effectively predicted glucose concentration with a coefficient of determination of 0.828, demonstrating the synergy of biosensor technology and ML for reliable glucose detection.
2025
Autores
Pimentel, GO; dos Santos, MF; Lima, J; Mercorelli, P; Fernandes, FM;
Publicação
SENSORS
Abstract
This paper focuses on the modeling, control, and simulation of an over-actuated hexacopter tilt-rotor (HTR). This configuration implies that two of the six actuators are independently tilted using servomotors, which provide high maneuverability and reliability. This approach is predicted to maintain zero pitch throughout the trajectory and is expected to improve the aircraft's steering accuracy. This arrangement is particularly beneficial for precision agriculture (PA) applications where accurate monitoring and management of crops are critical. The enhanced maneuverability allows for precise navigation in complex vineyard environments, enabling the unmanned aerial vehicle (UAV) to perform tasks such as aerial imaging and crop health monitoring. The employed control architecture consists of cascaded proportional (P)-proportional, integral and derivative (PID) controllers using the successive loop closure (SLC) method on the five controlled degrees of freedom (DoFs). Simulated results using Gazebo demonstrate that the HTR achieves stability and maneuverability throughout the flight path, significantly improving precision agriculture practices. Furthermore, a comparison of the HTR with a traditional hexacopter validates the proposed approach.
2025
Autores
Benhanifia, A; Ben Cheikh, Z; Oliveira, PM; Valente, A; Lima, J;
Publicação
INTELLIGENT SYSTEMS WITH APPLICATIONS
Abstract
Predictive maintenance (PDM) is emerging as a strong transformative tool within Industry 4.0, enabling significant improvements in the sustainability and efficiency of manufacturing processes. This in-depth literature review, which follows the PRISMA 2020 framework, examines how PDM is being implemented in several areas of the manufacturing industry, focusing on how it is taking advantage of technological advances such as artificial intelligence (AI) and the Internet of Things (IoT). The presented in-depth evaluation of the technological principles, implementation methods, economic consequences, and operational improvements based on academic and industrial sources and new innovations is performed. According to the studies, integrating CDM can significantly increase machine uptime and reliability while reducing maintenance costs. In addition, the transition to PDM systems that use real-time data to predict faults and plan maintenance more accurately holds out promising prospects. However, there are still gaps in the overall methodologies for measuring the return on investment of PDM implementations, suggesting an essential research direction.
2025
Autores
Matos, DM; Costa, P; Sobreira, H; Valente, A; Lima, J;
Publicação
INTERNATIONAL JOURNAL OF INTELLIGENT ROBOTICS AND APPLICATIONS
Abstract
With the increasing adoption of mobile robots for transporting components across several locations in industries, congestion problems appear if the movement of these robots is not correctly planned. This paper introduces a fleet management system where a central agent coordinates, plans, and supervises the fleet, mitigating the risk of deadlocks and addressing issues related to delays, deviations between the planned paths and reality, and delays in communication. The system uses the TEA* graph-based path planning algorithm to plan the paths of each agent. In conjunction with the TEA* algorithm, the concepts of supervision and graph-based environment representation are introduced. The system is based on ROS framework and allows each robot to maintain its autonomy, particularly in control and localization, while aligning its path with the plan from the central agent. The effectiveness of the proposed fleet manager is demonstrated in a real scenario where robots operate on a shop floor, showing its successful implementation.
2024
Autores
Piza, C; Bombacini, MR; Lima, J;
Publicação
OPTIMIZATION, LEARNING ALGORITHMS AND APPLICATIONS, OL2A 2024, PT II
Abstract
Nowadays, there is the paradox of technology: although smartphones have revolutionized our way of living, bringing convenience and connectivity, they have also introduced new challenges, notably distracted driving. This paper addresses the issue of visual distraction, one of the main contributors to traffic accidents, through the development of an innovative system that combines the application of convolutional neural networks and the functionality of mobile devices. The adopted methodology focused on the collection of a broad set of images to train an artificial intelligence model capable of classifying a qualitative variable with two distinct categories: attention and distraction of a driver. In particular, the study concentrated on creating a mobile application that uses a smartphone's camera to monitor the driver and issue auditory alerts if it detects prolonged distraction. The achieved results highlighted the efficacy of the model, especially after its optimization for the TensorFlow Lite format, suitable for implementation on mobile devices due to its efficiency in terms of speed and resource consumption.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.