Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

2024

Predicting Aesthetic Outcomes in Breast Cancer Surgery: A Multimodal Retrieval Approach

Autores
Zolfagharnasab, MH; Freitas, N; Gonçalves, T; Bonci, E; Mavioso, C; Cardoso, MJ; Oliveira, HP; Cardoso, JS;

Publicação
Artificial Intelligence and Imaging for Diagnostic and Treatment Challenges in Breast Care - First Deep Breast Workshop, Deep-Breath 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, October 10, 2024, Proceedings

Abstract
Breast cancer treatments often affect patients’ body image, making aesthetic outcome predictions vital. This study introduces a Deep Learning (DL) multimodal retrieval pipeline using a dataset of 2,193 instances combining clinical attributes and RGB images of patients’ upper torsos. We evaluate four retrieval techniques: Weighted Euclidean Distance (WED) with various configurations and shallow Artificial Neural Network (ANN) for tabular data, pre-trained and fine-tuned Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs), and a multimodal approach combining both data types. The dataset, categorised into Excellent/Good and Fair/Poor outcomes, is organised into over 20K triplets for training and testing. Results show fine-tuned multimodal ViTs notably enhance performance, achieving up to 73.85% accuracy and 80.62% Adjusted Discounted Cumulative Gain (ADCG). This framework not only aids in managing patient expectations by retrieving the most relevant post-surgical images but also promises broad applications in medical image analysis and retrieval. The main contributions of this paper are the development of a multimodal retrieval system for breast cancer patients based on post-surgery aesthetic outcome and the evaluation of different models on a new dataset annotated by clinicians for image retrieval. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

2024

Factors affecting social entrepreneurial intentions in a Portuguese higher education institution

Autores
de Sousa, JM; Almeida, F;

Publicação
INTERNATIONAL JOURNAL OF INNOVATION SCIENCE

Abstract
PurposeThis study aims to identify and explore the factors affecting social entrepreneurial intentions considering an educational institution in Portugal. It also intends to determine the relevance of moderating factors in the antecedents and entrepreneurial intention of these students. Design/methodology/approachA panel of 177 undergraduate students enrolled in a social entrepreneurship course between the academic years 2018 and 2021 is considered. The data is explored quantitatively considering descriptive analysis techniques, correlational analysis and hypothesis testing. FindingsThe findings reveal that entrepreneurial intention depends on multiple individual, organizational and contextual dimensions. Students' entrepreneurial intention remains unchanged regardless of the student's profile. However, students' professional experience is a more relevant factor for the identification of organizational dimensions related to curriculum and critical pedagogy, while previous involvement in volunteer activities contributes to a higher prevalence of individual factors. Originality/valueTo the best of the authors' knowledge, this study is original in exploring the role of entrepreneurial intention and its antecedents considering a heterogeneous students' profile. It offers theoretical and practical contributions by extending the literature on social entrepreneurial intention that can be used by higher education institutions to offer specific training more focused on the student's profile.

2024

Enhanced Sensitivity in Optical Sensors through Self-Image Theory and Graphene Oxide Coating

Autores
Cunha, C; Monteiro, C; Vaz, A; Silva, S; Frazao, O; Novais, S;

Publicação
SENSORS

Abstract
This paper presents an approach to enhancing sensitivity in optical sensors by integrating self-image theory and graphene oxide coating. The sensor is specifically engineered to quantitatively assess glucose concentrations in aqueous solutions that simulate the spectrum of glucose levels typically encountered in human saliva. Prior to sensor fabrication, the theoretical self-image points were rigorously validated using Multiphysics COMSOL 6.0 software. Subsequently, the sensor was fabricated to a length corresponding to the second self-image point (29.12 mm) and coated with an 80 mu m/mL graphene oxide film using the Layer-by-Layer technique. The sensor characterization in refractive index demonstrated a wavelength sensitivity of 200 +/- 6 nm/RIU. Comparative evaluations of uncoated and graphene oxide-coated sensors applied to measure glucose in solutions ranging from 25 to 200 mg/dL showed an eightfold sensitivity improvement with one bilayer of Polyethyleneimine/graphene. The final graphene oxide-based sensor exhibited a sensitivity of 10.403 +/- 0.004 pm/(mg/dL) and demonstrated stability with a low standard deviation of 0.46 pm/min and a maximum theoretical resolution of 1.90 mg/dL.

2024

Proceedings of the 19th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2024, Volume 4: VISAPP, Rome, Italy, February 27-29, 2024

Autores
Radeva, P; Furnari, A; Bouatouch, K; de Sousa, AA;

Publicação
VISIGRAPP (4): VISAPP

Abstract

2024

Shapley-Based Data Valuation Method for the Machine Learning Data Markets (MLDM)

Autores
Baghcheband, H; Soares, C; Reis, LP;

Publicação
FOUNDATIONS OF INTELLIGENT SYSTEMS, ISMIS 2024

Abstract
Data valuation, the process of assigning value to data based on its utility and usefulness, is a critical and largely unexplored aspect of data markets. Within the Machine Learning Data Market (MLDM), a platform that enables data exchange among multiple agents, the challenge of quantifying the value of data becomes particularly prominent. Agents within MLDM are motivated to exchange data based on its potential impact on their individual performance. Shapley Value-based methods have gained traction in addressing this challenge, prompting our study to investigate their effectiveness within the MLDM context. Specifically, we propose the Gain Data Shapley Value (GDSV) method tailored for MLDM and compare it to the original data valuation method used in MLDM. Our analysis focuses on two common learning algorithms, Decision Tree (DT) and K-nearest neighbors (KNN), within a simulated society of five agents, tested on 45 classification datasets. results show that the GDSV leads to incremental improvements in predictive performance across both DT and KNN algorithms compared to performance-based valuation or the baseline. These findings underscore the potential of Shapley Value-based methods in identifying high-value data within MLDM while indicating areas for further improvement.

2024

Methodology for Implementing a Manufacturing Execution System in the Machinery and Equipment Industry

Autores
Costa, L; Almeida, A; Reis, L;

Publicação
5TH INTERNATIONAL CONFERENCE ON INDUSTRY 4.0 AND SMART MANUFACTURING, ISM 2023

Abstract
In today's volatile, uncertain, and complex business environments, manufacturing companies must not only adapt to market demands but also minimize the time between problem occurrence and resolution. The implementation of lean manufacturing systems has been crucial in this regard. However, traditional approaches have shown notable inefficiencies that can be effectively addressed through digitalization. By embracing digital solutions, manufacturing companies can ensure efficient continuous improvement, driving performance to higher levels. This study aims to find a digital solution for a specific company that faces daily challenges associated with low visibility into production. An investigation revealed that the Lean tools used by the company were outdated, directly affecting the generated information and consequently, decision-making. The integration of a Manufacturing Execution System into the factory's dynamics was the solution found. In this context, a step-by-step methodology is proposed to guide the implementation. As a result, a prototype of the system was designed. The validation of the system by end-users demonstrates the success of the proposed methodology.

  • 68
  • 4073