Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

2025

Comparative Analysis of Simulated Annealing and Tabu Search for Parallel Machine Scheduling

Autores
Mota, A; Ávila, P; Bastos, J; Roque, AC; Pires, A;

Publicação
Procedia Computer Science

Abstract
This paper compares the performance of Simulated Annealing and Tabu Search meta-heuristics in addressing a parallel machine scheduling problem aimed at minimizing weighted earliness, tardiness, total flowtime, and machine deterioration costs-a multi-objective optimization problem. The problem is transformed into a single-objective problem using weighting and weighting relative distance methods. Four scenarios, varying in the number of jobs and machines, are created to evaluate these metaheuristics. Computational experiments indicate that Simulated Annealing consistently yields superior solutions compared to Tabu Search in scenarios with lower dimensions despite longer run times. Conversely, Tabu Search performs better in higher-dimensional scenarios. Furthermore, it is observed that solutions generated by different weighting methods exhibit similar performance. © 2025 The Author(s).

2025

GANs vs. Diffusion Models for virtual staining with the HER2match dataset

Autores
Klöckner, P; Teixeira, J; Montezuma, D; Cardoso, JS; Horlings, HM; de Oliveira, SP;

Publicação
CoRR

Abstract

2025

Enhancing spectral imaging with multi-condition image fusion

Autores
Teixeira, J; Lopes, T; Capela, D; Monteiro, CS; Guimaraes, D; Lima, A; Jorge, PAS; Silva, NA;

Publicação
SCIENTIFIC REPORTS

Abstract
Spectral Imaging techniques such as Laser-induced Breakdown Spectroscopy (LIBS) and Raman Spectroscopy (RS) enable the localized acquisition of spectral data, providing insights into the presence, quantity, and spatial distribution of chemical elements or molecules within a sample. This significantly expands the accessible information compared to conventional imaging approaches such as machine vision. However, despite its potential, spectral imaging also faces specific challenges depending on the limitations of the spectroscopy technique used, such as signal saturation, matrix interferences, fluorescence, or background emission. To address these challenges, this work explores the potential of using techniques from conventional RGB imaging to enhance the dynamic range of spectral imaging. Drawing inspiration from multi-exposure fusion techniques, we propose an algorithm that calculates a global weight map using exposure and contrast metrics. This map is then used to merge datasets acquired with the same technique under distinct acquisition conditions. With case studies focused on LIBS and Raman Imaging, we demonstrate the potential of our approach to enhance the quality of spectral data, mitigating the impact of the aforementioned limitations. Results show a consistent improvement in overall contrast and peak signal-to-noise ratios of the merged images compared to single-condition images. Additionally, from the application perspective, we also discuss the impact of our approach on sample classification problems. The results indicate that LIBS-based classification of Li-bearing minerals (with Raman serving as the ground truth), is significantly improved when using merged images, reinforcing the advantages of the proposed solution for practical applications.

2025

Modelling circular-driven Digital Twins

Autores
Ventura, A; Sousa, C; Pereira, C; Duarte, N; Martins, M; Silva, B;

Publicação
Procedia Computer Science

Abstract
In the current era of digital transformation, adopting circular business models that blend circularity principles with advanced digital technologies, is fundamental for sustainable industrial practices. This paper suggests a semantic model for a Digital Twin based on an Asset Administration Shell. It also explores the Digital Product Passport topic since this will be the final goal for the Digital Twin. The Digital Product Passport serves as a complete digital record of the product life cycle to improve traceability and circularity. The Asset Administration Shell provides a standardized digital representation of assets, facilitating interoperability and fluid data exchange. By taking advantage of a Digital Twin, industries can optimize performance and predict product needs. Moreover, it enriches the Digital Product Passport with updated and accurate data, facilitating traceability and efficient product management. The application of semantic models ensures a consistent interpretation of data across all platforms, increasing the reliability of digital interactions and interoperability. This article explains the potential of these technologies to promote a circular economy, focusing in the particular case of the Digital Product Passport. © 2025 The Author(s).

2025

Smart Hygrothermal Ventilation, an Energy-Efficient Solution for Controlling Relative Humidity in Historical Constructions: A Case Study

Autores
Palley, B; de Freitas, VP; Abreu, P; Restivo, MT; Freitas, TS;

Publicação
PROTECTION OF HISTORICAL CONSTRUCTIONS, PROHITECH 2025, VOL 1

Abstract
All over the world, there are several unoccupied spaces without adequate constant control mechanisms to reduce and prevent mold and provide good internal conditions and indoor air quality. A widespread way to reduce building humidity is through heating and dehumidification, which are costly to maintain and have high energy consumption. In addition, there are few studies on adjustable hygro ventilation systems, which do not consider the influence of temperature fluctuations. This work describes the operation of a prototype, which fills existing research gaps by considering not only the control of relative humidity (RH) but also the temperature peaks in indoor air conditions, allowing the maintenance of good air quality. The prototype Smart Hygrothermal Ventilation system uses two pairs of sensors related to RH and temperature, one pair placed inside an unoccupied compartment of the building and the other pair in the external environment, in order to activate a fan and the respective speed. The proposed prototype was applied in a compartment located on the ground floor in an unoccupied old rural building in a village near Porto during the winter period. The results show that the system performed adequately for different configurations of its functionalities. Therefore, the system offers an efficient alternative to minimize mold and the fluctuation of internal RH and temperature. Furthermore, it could be a vital mechanism for the conservation of historic buildings.

2025

Leveraging Cold Diffusion for the Decomposition of Identically Distributed Superimposed Images

Autores
Montenegro, H; Cardoso, JS;

Publicação
IEEE OPEN JOURNAL OF SIGNAL PROCESSING

Abstract
With the growing adoption of Deep Learning for imaging tasks in biometrics and healthcare, it becomes increasingly important to ensure privacy when using and sharing images of people. Several works enable privacy-preserving image sharing by anonymizing the images so that the corresponding individuals are no longer recognizable. Most works average images or their embeddings as an anonymization technique, relying on the assumption that the average operation is irreversible. Recently, cold diffusion models, based on the popular denoising diffusion probabilistic models, have succeeded in reversing deterministic transformations on images. In this work, we leverage cold diffusion to decompose superimposed images, empirically demonstrating that it is possible to obtain two or more identically-distributed images given their average. We propose novel sampling strategies for this task and show their efficacy on three datasets. Our findings highlight the risks of averaging images as an anonymization technique and argue for the use of alternative anonymization strategies.

  • 67
  • 4201