Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre Ciência e Engenharia de Computadores

Ciência e Engenharia dos Computadores

Os computadores, que vão desde os cada vez mais reduzidos dispositivos programáveis, os omnipresentes smartphones, até aos supercomputadores, atualmente capazes de realizar mais de um trilião de operações por segundo, tornaram-se uma componente central e cada vez mais indispensável da vida quotidiana. A ciência e a engenharia informática são os pilares da evolução imparável da computação e permitem a sua aplicação a uma infinidade cada vez maior de soluções baseadas em computadores.

Além disso, os sistemas informáticos em sectores cruciais como os serviços públicos, os cuidados de saúde, os transportes e as finanças apresentam riscos novos, muitas vezes imprevistos, que desafiam os nossos conhecimentos e colocam desafios difíceis e intrincados associados à interoperabilidade, à escalabilidade, à segurança e à criticidade. A nível mundial, os sistemas informáticos nas organizações são responsáveis por mais de 10% de todo o consumo global de energia e por cerca de 2% das emissões globais de CO2, o que faz com que a sustentabilidade de grande parte da nossa inovação seja também um desafio significativo.

notícias
Ciência e Engenharia dos Computadores

“Quien sabe por Algebra, sabe scientificamente” – a jubilação de José Nuno Oliveira marca uma era na informática da UMinho

Mais de quatro décadas passaram desde o primeiro dia de José Nuno Oliveira na Universidade do Minho (UMinho). No dia 14 de novembro, o Auditório A1 do Campus de Gualtar da Universidade do Minho (UMinho), em Braga, foi palco de uma despedida que mexeu com sentimentos e memórias. A comunidade da UMinho, e não só, reuniu-se para celebrar a dedicação de José Nuno Oliveira ao ensino, à investigação e à formação de gerações em Engenharia Informática. 

28 novembro 2025

Ciência e Engenharia dos Computadores

INESC TEC participa em debate sobre o futuro dos centros de dados em Portugal

Que passos devem ser dados para termos, em Portugal, data centres sustentáveis e eficientes? E que papel pode ter a supercomputação neste processo? O INESC TEC marcou presença numa iniciativa da APDC – Digital Business Community, em colaboração com a VdA e a Portugal Data Centers, para discutir a instalação, a operação e o futuro destas infraestruturas no país.

26 novembro 2025

Ciência e Engenharia dos Computadores

O diálogo sobre semicondutores em Portugal fez-se com contributos do INESC TEC – seis meses após o arranque do Centro de Competências

O posicionamento português no ecossistema dos semicondutores foi um dos tópicos abordados no evento promovido pelo Centro de Competências Português em Semicondutores (POEMS), do qual o INESC TEC é parceiro.

21 novembro 2025

Ciência e Engenharia dos Computadores

INESC TEC e Águas do Douro e Paiva assinam protocolo de colaboração

O mais recente protocolo de colaboração do INESC TEC foi assinado com a Águas do Douro e Paiva (AdDP), a 31 de outubro, nas instalações da AdDP, em Lever.

06 novembro 2025

Ciência e Engenharia dos Computadores

INESC TEC reforça presença internacional com contribuições novas na área de sistemas de armazenamento e redes

O INESC TEC marcou presença em setembro em duas das conferências internacionais mais prestigiadas nas áreas de bases de dados e redes, a VLDB e a SIGCOMM. Os investigadores que participaram levaram ao debate internacional novas fronteiras em armazenamento, tolerância a faltas e sistemas operativos.   

29 outubro 2025

Publicações

2025

Geo-Indistinguishability

Autores
Mendes, R; Vilela, P;

Publicação
Encyclopedia of Cryptography, Security and Privacy, Third Edition

Abstract
[No abstract available]

2025

Multilayer horizontal visibility graphs for multivariate time series analysis

Autores
Silva, VF; Silva, ME; Ribeiro, P; Silva, F;

Publicação
DATA MINING AND KNOWLEDGE DISCOVERY

Abstract
Multivariate time series analysis is a vital but challenging task, with multidisciplinary applicability, tackling the characterization of multiple interconnected variables over time and their dependencies. Traditional methodologies often adapt univariate approaches or rely on assumptions specific to certain domains or problems, presenting limitations. A recent promising alternative is to map multivariate time series into high-level network structures such as multiplex networks, with past work relying on connecting successive time series components with interconnections between contemporary timestamps. In this work, we first define a novel cross-horizontal visibility mapping between lagged timestamps of different time series and then introduce the concept of multilayer horizontal visibility graphs. This allows describing cross-dimension dependencies via inter-layer edges, leveraging the entire structure of multilayer networks. To this end, a novel parameter-free topological measure is proposed and common measures are extended for the multilayer setting. Our approach is general and applicable to any kind of multivariate time series data. We provide an extensive experimental evaluation with both synthetic and real-world datasets. We first explore the proposed methodology and the data properties highlighted by each measure, showing that inter-layer edges based on cross-horizontal visibility preserve more information than previous mappings, while also complementing the information captured by commonly used intra-layer edges. We then illustrate the applicability and validity of our approach in multivariate time series mining tasks, showcasing its potential for enhanced data analysis and insights.

2024

Assessment of Multiple Fiducial Marker Trackers on Hololens 2

Autores
Costa, GM; Petry, MR; Martins, JG; Moreira, APGM;

Publicação
IEEE ACCESS

Abstract
Fiducial markers play a fundamental role in various fields in which precise localization and tracking are paramount. In Augmented Reality, they provide a known reference point in the physical world so that AR systems can accurately identify, track, and overlay virtual objects. This accuracy is essential for creating a seamless and immersive AR experience, particularly when prompted to cope with the sub-millimeter requirements of medical and industrial applications. This research article presents a comparative analysis of four fiducial marker tracking algorithms, aiming to assess and benchmark their accuracy and precision. The proposed methodology compares the pose estimated by four algorithms running on Hololens 2 with those provided by a highly accurate ground truth system. Each fiducial marker was positioned in 25 sampling points with different distances and orientations. The proposed evaluation method is not influenced by human error, relying only on a high-frequency and accurate motion tracking system as ground truth. This research shows that it is possible to track the fiducial markers with translation and rotation errors as low as 1.36 mm and 0.015 degrees using ArUco and Vuforia, respectively.

2024

Educational Practices and Strategies With Immersive Learning Environments: Mapping of Reviews for Using the Metaverse

Autores
Beck, D; Morgado, L; O'Shea, P;

Publicação
IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES

Abstract
The educational metaverse promises fulfilling ambitions of immersive learning, leveraging technology-based presence alongside narrative and/or challenge-based deep mental absorption. Most reviews of immersive learning research were outcomes-focused, few considered the educational practices and strategies. These are necessary to provide theoretical and pedagogical frameworks to situate outcomes within a context where technology is in concert with educational approaches. We sought a broader perspective of the practices and strategies used in immersive learning environments, and conducted a mapping survey of reviews, identifying 47 studies. Extracted accounts of educational practices and strategies under thematic analysis yielded 45 strategies and 21 practices, visualized as a network clustered by conceptual proximity. Resulting clusters Active context, Collaboration, Engagement and Scaffolding, Presence, and Real and virtual multimedia learning expose the richness of practices and strategies within the field. The visualization maps the field, supporting decision-making when combining practices and strategies for using the metaverse in education, highlights which practices and strategies are supported by the literature, and the presence and absence of diversity within clusters.

2024

Performance and explainability of feature selection-boosted tree-based classifiers for COVID-19 detection

Autores
Rufino, J; Ramírez, JM; Aguilar, J; Baquero, C; Champati, J; Frey, D; Lillo, RE; Fernández Anta, A;

Publicação
HELIYON

Abstract
In this paper, we evaluate the performance and analyze the explainability of machine learning models boosted by feature selection in predicting COVID-19-positive cases from self-reported information. In essence, this work describes a methodology to identify COVID-19 infections that considers the large amount of information collected by the University of Maryland Global COVID-19 Trends and Impact Survey (UMD-CTIS). More precisely, this methodology performs a feature selection stage based on the recursive feature elimination (RFE) method to reduce the number of input variables without compromising detection accuracy. A tree-based supervised machine learning model is then optimized with the selected features to detect COVID-19-active cases. In contrast to previous approaches that use a limited set of selected symptoms, the proposed approach builds the detection engine considering a broad range of features including self-reported symptoms, local community information, vaccination acceptance, and isolation measures, among others. To implement the methodology, three different supervised classifiers were used: random forests (RF), light gradient boosting (LGB), and extreme gradient boosting (XGB). Based on data collected from the UMD-CTIS, we evaluated the detection performance of the methodology for four countries (Brazil, Canada, Japan, and South Africa) and two periods (2020 and 2021). The proposed approach was assessed in terms of various quality metrics: F1-score, sensitivity, specificity, precision, receiver operating characteristic (ROC), and area under the ROC curve (AUC). This work also shows the normalized daily incidence curves obtained by the proposed approach for the four countries. Finally, we perform an explainability analysis using Shapley values and feature importance to determine the relevance of each feature and the corresponding contribution for each country and each country/year.

2024

Multilayer quantile graph for multivariate time series analysis and dimensionality reduction

Autores
Silva, VF; Silva, ME; Ribeiro, P; Silva, F;

Publicação
INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS

Abstract
In recent years, there has been a surge in the prevalence of high- and multidimensional temporal data across various scientific disciplines. These datasets are characterized by their vast size and challenging potential for analysis. Such data typically exhibit serial and cross-dependency and possess high dimensionality, thereby introducing additional complexities to conventional time series analysis methods. To address these challenges, a recent and complementary approach has emerged, known as network-based analysis methods for multivariate time series. In univariate settings, quantile graphs have been employed to capture temporal transition properties and reduce data dimensionality by mapping observations to a smaller set of sample quantiles. To confront the increasingly prominent issue of high dimensionality, we propose an extension of quantile graphs into a multivariate variant, which we term Multilayer Quantile Graphs. In this innovative mapping, each time series is transformed into a quantile graph, and inter-layer connections are established to link contemporaneous quantiles of pairwise series. This enables the analysis of dynamic transitions across multiple dimensions. In this study, we demonstrate the effectiveness of this new mapping using synthetic and benchmark multivariate time series datasets. We delve into the resulting network's topological structures, extract network features, and employ these features for original dataset analysis. Furthermore, we compare our results with a recent method from the literature. The resulting multilayer network offers a significant reduction in the dimensionality of the original data while capturing serial and cross-dimensional transitions. This approach facilitates the characterization and analysis of large multivariate time series datasets through network analysis techniques.