Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

2024

MOMI tuning method based on frequency-response data

Autores
Vrancic, D; Oliveira, PM; Huba, M; Bisták, P;

Publicação
IFAC PAPERSONLINE

Abstract
The paper presents a modification of the Magnitude Optimum Multiple Integration (MOMI) method process non-parametric data in the frequency domain instead of the time domain The required frequency data are obtained directly from the filtered amplitude -shifted process step response and have been shown to be relatively insensitive to normally distributed process noise. All calculations, including the calculation of the PID controller parameters, are performed analytically. The closed loop responses to tested processes with added normally distributed noise were relatively fast with small or no overshoot, all according to the Magnitude Optimum (MO) method. The proposed method is not limited to open loop step responses or to the PID controller structure.

2024

On-the-fly Data Augmentation for Forecasting with Deep Learning

Autores
Cerqueira, V; dos Santos, MR; Baghoussi, Y; Soares, C;

Publicação
CoRR

Abstract

2024

Multi-objective Scheduling Optimization in Job Shop with Unrelated Parallel Machines Using NSGA-III

Autores
dos Santos, F; Costa, L; Varela, L;

Publicação
COMPUTATIONAL SCIENCE AND ITS APPLICATIONS-ICCSA 2024 WORKSHOPS, PT II

Abstract
Job shop scheduling problems are common in the engineering field. In spite of some approaches consider just the most important objective to optimize, several other conflicting criteria are also important. Multi-objective optimization algorithms can be used to solve these problems optimizing, simultaneously, two or more objectives. However, when the number of objectives increases, the problems become more challenging. This paper presents the results of the optimization of a set of job shop scheduling with unrelated parallel machines and sequence-dependent setup times, using the NSGA-III. Several instances with different sizes in terms of number of jobs and machines are considered. The goal is to assign jobs to machines in order to simultaneously minimize the maximum job completion time (makespan), the average job completion time and the standard deviation of the job completion time. These results are analysed and confirm the validity and highlight the advantages of this approach.

2024

Classification of Keratitis from Eye Corneal Photographs using Deep Learning

Autores
Beirão, MM; Matos, J; Gonçalves, T; Kase, C; Nakayama, LF; Freitas, Dd; Cardoso, JS;

Publicação
CoRR

Abstract

2024

Cognitive personalization for online microtask labor platforms: A systematic literature review

Autores
Paulino, D; Correia, A; Barroso, J; Paredes, H;

Publicação
USER MODELING AND USER-ADAPTED INTERACTION

Abstract
Online microtask labor has increased its role in the last few years and has provided the possibility of people who were usually excluded from the labor market to work anytime and without geographical barriers. While this brings new opportunities for people to work remotely, it can also pose challenges regarding the difficulty of assigning tasks to workers according to their abilities. To this end, cognitive personalization can be used to assess the cognitive profile of each worker and subsequently match those workers to the most appropriate type of work that is available on the digital labor market. In this regard, we believe that the time is ripe for a review of the current state of research on cognitive personalization for digital labor. The present study was conducted by following the recommended guidelines for the software engineering domain through a systematic literature review that led to the analysis of 20 primary studies published from 2010 to 2020. The results report the application of several cognition theories derived from the field of psychology, which in turn revealed an apparent presence of studies indicating accurate levels of cognitive personalization in digital labor in addition to a potential increase in the worker's performance, most frequently investigated in crowdsourcing settings. In view of this, the present essay seeks to contribute to the identification of several gaps and opportunities for future research in order to enhance the personalization of online labor, which has the potential of increasing both worker motivation and the quality of digital work.

2024

Multilayer quantile graph for multivariate time series analysis and dimensionality reduction

Autores
Silva, VF; Silva, ME; Ribeiro, P; Silva, F;

Publicação
INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS

Abstract
In recent years, there has been a surge in the prevalence of high- and multidimensional temporal data across various scientific disciplines. These datasets are characterized by their vast size and challenging potential for analysis. Such data typically exhibit serial and cross-dependency and possess high dimensionality, thereby introducing additional complexities to conventional time series analysis methods. To address these challenges, a recent and complementary approach has emerged, known as network-based analysis methods for multivariate time series. In univariate settings, quantile graphs have been employed to capture temporal transition properties and reduce data dimensionality by mapping observations to a smaller set of sample quantiles. To confront the increasingly prominent issue of high dimensionality, we propose an extension of quantile graphs into a multivariate variant, which we term Multilayer Quantile Graphs. In this innovative mapping, each time series is transformed into a quantile graph, and inter-layer connections are established to link contemporaneous quantiles of pairwise series. This enables the analysis of dynamic transitions across multiple dimensions. In this study, we demonstrate the effectiveness of this new mapping using synthetic and benchmark multivariate time series datasets. We delve into the resulting network's topological structures, extract network features, and employ these features for original dataset analysis. Furthermore, we compare our results with a recent method from the literature. The resulting multilayer network offers a significant reduction in the dimensionality of the original data while capturing serial and cross-dimensional transitions. This approach facilitates the characterization and analysis of large multivariate time series datasets through network analysis techniques.

  • 169
  • 4076