2024
Authors
Montella, R; De Vita, CG; Mellone, G; Ciricillo, T; Caramiello, D; Di Luccio, D; Kosta, S; Damasevicius, R; Maskeliunas, R; Queirós, R; Swacha, J;
Publication
APPLIED SCIENCES-BASEL
Abstract
Featured Application The presented solution can be applied to simplify and hasten the development of gamified programming exercises conforming to the Framework for Gamified Programming Education (FGPE) standard.Abstract Skilled programmers are in high demand, and a critical obstacle to satisfying this demand is the difficulty of acquiring programming skills. This issue can be addressed with automated assessment, which gives fast feedback to students trying to code, and gamification, which motivates them to intensify their learning efforts. Although some collections of gamified programming exercises are available, producing new ones is very demanding. This paper presents GAMAI, an AI-powered exercise gamifier, enriching the Framework for Gamified Programming Education (FGPE) ecosystem. Leveraging large language models, GAMAI enables teachers to effortlessly apply storytelling to describe a gamified scenario, as GAMAI decorates natural language text with the sentences needed by OpenAI APIs to contextualize the prompt. Once a gamified scenario has been generated, GAMAI automatically produces exercise files in a FGPE-compatible format. According to the presented evaluation results, most gamified exercises generated with AI support were ready to be used, with no or minimum human effort, and were positively assessed by students. The usability of the software was also assessed as high by the users. Our research paves the way for a more efficient and interactive approach to programming education, leveraging the capabilities of advanced language models in conjunction with gamification principles.
2024
Authors
Almeida, F;
Publication
INTERNATIONAL JOURNAL OF INNOVATION SCIENCE
Abstract
[No abstract available]
2024
Authors
do Carmo, FD; Carrillo-Galvez, A; Soares, T; Mouráo, Z; Ponomarev, I; Araújo, J; Bandeira, E;
Publication
Abstract
2024
Authors
Mamede, RM; Neto, PC; Sequeira, AF;
Publication
CoRR
Abstract
2024
Authors
Gordillo, A; Calero, C; Moraga, MA; García, F; Fernandes, JP; Abreu, R; Saraiva, J;
Publication
SOFTWARE QUALITY JOURNAL
Abstract
Software is developed using programming languages whose choice is made based on a wide range of criteria, but it should be noted that the programming language selected can affect the quality of the software product. In this paper, we focus on analysing the differences in energy consumption when running certain algorithms that have been developed using different programming languages. Therefore, we focus on the software quality from the perspective of greenability, in concrete in the aspects related to energy efficiency. For this purpose, this study has conducted an empirical investigation about the most suitable programming languages from an energy efficiency perspective using a hardware-based consumption measurement instrument that obtains real data about energy consumption. The study builds upon a previous study in which energy efficiency of PL were ranked using a software-based approach where the energy consumption is an estimation. As a result, no significant differences are obtained between two approaches, in terms of ranking the PL. However, if it is required to have a more realistic knowledge of consumption, it is necessary to use hardware approaches. Furthermore, the hardware approach provides information about the energy consumption of specific DUT hardware components, such as, HDD, graphics card, and processor, and a ranking for each of component is elaborated. This can provide useful information to make a more informed decision on the choice of a PL, depending on several factors, such as the type of algorithms to be implemented, or the effects on power consumption not only in overall, but also depending on specific DUT hardware components.
2024
Authors
Ramos, M; Azevedo, J; Kingsbury, K; Pereira, J; Esteves, T; Macedo, R; Paulo, J;
Publication
PROCEEDINGS OF THE VLDB ENDOWMENT
Abstract
We present LAZYFS, a new fault injection tool that simplifies the debugging and reproduction of complex data durability bugs experienced by databases, key-value stores, and other data-centric systems in crashes. Our tool simulates persistence properties of POSIX file systems (e.g., operations ordering and atomicity) and enables users to inject lost and torn write faults with a precise and controlled approach. Further, it provides profiling information about the system's operations flow and persisted data, enabling users to better understand the root cause of errors. We use LAZYFS to study seven important systems: PostgreSQL, etcd, Zookeeper, Redis, LevelDB, PebblesDB, and Lightning Network. Our fault injection campaign shows that LAZYFS automates and facilitates the reproduction of five known bug reports containing manual and complex reproducibility steps. Further, it aids in understanding and reproducing seven ambiguous bugs reported by users. Finally, LAZYFS is used to find eight new bugs, which lead to data loss, corruption, and unavailability.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.