Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

2025

Touch Empowerment: Self-Sustaining e-Tattoo Thermoelectric System for Temperature Mapping

Authors
Almeida, MAS; Pires, AL; Ramirez, JL; Malik, SB; de la Flor, S; Llobet, E; Pereira, AT; Pereira, AM;

Publication
ADVANCED SCIENCE

Abstract
In recent advancements within sensing technology, driven by the Internet of Things (IoT), significant impacts are observed on health sector applications, notably through wearable electronics like electronic tattoos (e-tattoos). These e-tattoos, designed for direct contact with the skin, facilitate precise monitoring of vital physiological parameters, including body heat, a critical indicator for conditions such as inflammation and infection. Monitoring these indicators can be crucial for early detection of chronic conditions, steering toward proactive healthcare management. This study delves into a thermoelectric sensor e-tattoo designed for detailed skin temperature mapping. Utilizing a novel design, this sensor detects temperature variations across thermoelectric stripes, leveraging screen-printed films of p-type Bi0.35Sb1.65Te3, n-type Bi2Te2.8Se0.2, and poly(vinyl alcohol) (PVA) for enhanced thermoelectric and flexible properties. The application of a prototype printed thermoelectric device on temporary tattoo paper, a pioneering development in wearable health technology is demonstrated. This device, validated through numerical simulations, exhibits significant potential as a non-invasive tool for temperature monitoring, highlighting its value in health diagnostics and management.

2025

Development of a Non-Invasive Clinical Machine Learning System for Arterial Pulse Wave Velocity Estimation

Authors
Martinez-Rodrigo, A; Pedrosa, J; Carneiro, D; Cavero-Redondo, I; Saz-Lara, A;

Publication
APPLIED SCIENCES-BASEL

Abstract
Arterial stiffness (AS) is a well-established predictor of cardiovascular events, including myocardial infarction and stroke. One of the most recognized methods for assessing AS is through arterial pulse wave velocity (aPWV), which provides valuable clinical insights into vascular health. However, its measurement typically requires specialized equipment, making it inaccessible in primary healthcare centers and low-resource settings. In this study, we developed and validated different machine learning models to estimate aPWV using common clinical markers routinely collected in standard medical examinations. Thus, we trained five regression models: Linear Regression, Polynomial Regression (PR), Gradient Boosting Regression, Support Vector Regression, and Neural Networks (NNs) on the EVasCu dataset, a cohort of apparently healthy individuals. A 10-fold cross-validation demonstrated that PR and NN achieved the highest predictive performance, effectively capturing nonlinear relationships in the data. External validation on two independent datasets, VascuNET (a healthy population) and ExIC-FEp (a cohort of cardiopathic patients), confirmed the robustness of PR and NN (R- (2)> 0.90) across different vascular conditions. These results indicate that by using easily accessible clinical variables and AI-driven insights, it is possible to develop a cost-effective tool for aPWV estimation, enabling early cardiovascular risk stratification in underserved and rural areas where specialized AS measurement devices are unavailable.

2025

PEL: Population-Enhanced Learning Classification for ECG Signal Analysis

Authors
Pourvahab, M; Mousavirad, SJ; Lashgari, F; Monteiro, A; Shafafi, K; Felizardo, V; Pais, S;

Publication
Studies in Computational Intelligence

Abstract
In the study, a new method for analyzing Electrocardiogram (ECG) signals is suggested, which is vital for detecting and treating heart diseases. The technique focuses on improving ECG signal classification, particularly in identifying different heart conditions like arrhythmias and myocardial infarctions. An enhanced version of the differential evolution (DE) algorithm integrated with neural networks is leveraged to classify these signals effectively. The process starts with preprocessing and extracting key features from ECG signals. These features are then processed by a multi-layer perceptron (MLP), a common neural network for ECG analysis. However, traditional MLP training methods have limitations, such as getting trapped in suboptimal solutions. To overcome this, an advanced DE algorithm is used, incorporating a partition-based strategy, opposition-based learning, and local search mechanisms. This improved DE algorithm optimizes the MLP by fine-tuning its weights and biases, using them as starting points for further refinement by the Gradient Descent with Momentum (GDM) local search algorithm. Extensive experiments demonstrate that this novel training approach yields better results than the traditional method. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

2025

Solving Logistical Challenges in Raw Material Reception: An Optimization and Heuristic Approach Combining Revenue Management Principles with Scheduling Techniques

Authors
Gomes, R; Silva, RG; Amorim, P;

Publication
MATHEMATICS

Abstract
The cost of transportation of raw materials is a significant part of the procurement costs in the forestry industry. As a result, routing and scheduling techniques were introduced to the transportation of raw materials from extraction sites to transformation mills. However, little to no attention has been given to date to the material reception process at the mill. Another factor that motivated this study was the formation of large waiting queues at the mill gates and docks. Queues increase the reception time and associated costs. This work presents the development of a scheduling and reception system for deliveries at a mill. The scheduling system is based on Trucking Appointment Systems (TAS), commonly used at maritime ports, and on revenue management concepts. The developed system allocates each delivery to a timeslot and to an unloading dock using revenue management concepts. Each delivery is segmented according to its priority. Higher-segment deliveries have priority when there are multiple candidates to be allocated for one timeslot. The developed scheduling system was tested on a set of 120 daily deliveries at a Portuguese paper pulp mill and led to a reduction of 66% in the daily reception cost when compared to a first-in, first-out (FIFO) allocation approach. The average waiting time was also significantly reduced, especially in the case of high-priority trucks.

2025

Anew effective heuristic for the Prisoner Transportation Problem

Authors
Ferreira, L; Maciel, MVM; de Carvalho, JV; Silva, E; Alvelos, FP;

Publication
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH

Abstract
The Prisoner Transportation Problem is an NP-hard combinatorial problem and a complex variant of the Dial-a- Ride Problem. Given a set of requests for pick-up and delivery and a homogeneous fleet, it consists of assigning requests to vehicles to serve all requests, respecting the problem constraints such as route duration, capacity, ride time, time windows, multi-compartment assignment of conflicting prisoners and simultaneous services in order to optimize a given objective function. In this paper, we present anew solution framework to address this problem that leads to an efficient heuristic. A comparison with computational results from previous papers shows that the heuristic is very competitive for some classes of benchmark instances from the literature and clearly superior in the remaining cases. Finally, suggestions for future studies are presented.

2025

Sustainability practices for software development in Scrum environment

Authors
Almeida, F;

Publication
International Journal of Agile Systems and Management

Abstract

  • 72
  • 4201