Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

2023

Comparison of 3D Sensors for Automating Bolt-Tightening Operations in the Automotive Industry

Authors
Dias, J; Simoes, P; Soares, N; Costa, CM; Petry, MR; Veiga, G; Rocha, LF;

Publication
SENSORS

Abstract
Machine vision systems are widely used in assembly lines for providing sensing abilities to robots to allow them to handle dynamic environments. This paper presents a comparison of 3D sensors for evaluating which one is best suited for usage in a machine vision system for robotic fastening operations within an automotive assembly line. The perception system is necessary for taking into account the position uncertainty that arises from the vehicles being transported in an aerial conveyor. Three sensors with different working principles were compared, namely laser triangulation (SICK TriSpector1030), structured light with sequential stripe patterns (Photoneo PhoXi S) and structured light with infrared speckle pattern (Asus Xtion Pro Live). The accuracy of the sensors was measured by computing the root mean square error (RMSE) of the point cloud registrations between their scans and two types of reference point clouds, namely, CAD files and 3D sensor scans. Overall, the RMSE was lower when using sensor scans, with the SICK TriSpector1030 achieving the best results (0.25 mm +/- 0.03 mm), the Photoneo PhoXi S having the intermediate performance (0.49 mm +/- 0.14 mm) and the Asus Xtion Pro Live obtaining the higher RMSE (1.01 mm +/- 0.11 mm). Considering the use case requirements, the final machine vision system relied on the SICK TriSpector1030 sensor and was integrated with a collaborative robot, which was successfully deployed in an vehicle assembly line, achieving 94% success in 53,400 screwing operations.

2023

Rethinking Technology-Based Services to Promote Citizen Participation in Urban Mobility

Authors
Duarte, SP; de Sousa, JP; de Sousa, JF;

Publication
INTERNATIONAL JOURNAL OF DECISION SUPPORT SYSTEM TECHNOLOGY

Abstract
Cities are complex and dynamic systems in which a network of actors interact, creating value through different activities. Cities can, therefore, be viewed as service ecosystems. Municipalities take advantage of digitalization to implement a service-dominant logic in urban and mobility planning and management, developing strategies with which citizens, local authorities, and other actors can create value together. While citizens are offered a better service experience, local authorities use citizens' input to improve decision-making processes. This research considers that designing an integrated service supported by an integrated information system can respond to current challenges in decision-making and information access for transport and mobility. Through a multidisciplinary methodological approach, this work proposes some guidelines to design an integrated information system to improve citizens' participation in urban planning and mobility services.

2023

The influence of Instagrammers' recommendations on healthy food purchase intention: The role of consumer involvement

Authors
Barbosa, B; Anana, E;

Publication
CUADERNOS DE GESTION

Abstract
This article examines the impact of digital influencers ' recommendations, especially Instagrammers, on the pur-chase intention of healthy food. In addition to the direct influence of source credibility on behavioral intention, the study also examines the influence of self-brand congruence and consumers' involvement with healthy food on purchase intention. To test research hypotheses, a quantitative study was conducted with 221 Portuguese con-sumers. High and low involvement with healthy food groups were classified by K-Means Clustering, and the analysis of the structure and the measurement models was performed by using Smart-PLS software. The results confirmed that Instagrammers' credibility drives self-brand congruence and purchase intention for healthy food. It was also confirmed that the involvement with healthy food moderates the influence of self-brand congruity and Instagrammers' credibility on consumers' intention to purchase healthy food, and that brand self-congruence partially mediates the influence of Instagrammers' credibility on purchase intention. Overall, this work offers rel-evant insights for both marketing managers and researchers, as it demonstrates the importance of considering the indirect effects of source credibility on purchase intention of healthy food and of comparing consumers with high and low product involvement to effectively evaluate the impact of digital influencers' in healthy food endorsement.

2023

Improving Social Engineering Resilience In Enterprises

Authors
Ribeiro, R; Mateus Coelho, N; Mamede, H;

Publication
ARIS2 - Advanced Research on Information Systems Security

Abstract
Social Engineering (SE) is a significant problem for enterprises. Cybercriminals continue developing new and sophisticated methods to trick individuals into disclosing confidential information or granting unauthorized access to infrastructure systems. These attacks remain a significant threat to enterprise systems despite significant investments in technical architecture and security measures. User awareness training and other behavioral interventions are critical for improving SE resilience. However, their effectiveness still needs to be determined, as personality traits may turn some individuals more susceptible to SE attacks. This paper aims to provide a comprehensive assessment of the state of knowledge in this field, identifying best practices for improving SE resilience in organizations and supporting the development of new research studies to address this issue. Its goal is to help enterprises of any size develop a framework to reduce the risk of successful SE attacks and create a culture of security awareness.

2023

Recommendation for entrepreneurs

Authors
Duarte, N; Pereira, C;

Publication
Managing Generation Z: Motivation, Engagement and Loyalty

Abstract
In the chapter, we can find the recommendation for entrepreneurs. The authors are trying to answer the question: How should employers treat Generation Z employees? A complex analysis of the research carried out by the authors as well as other examples from Europe and other continents have been pointed out. A recommendation for enterprises has been included. © 2023 selection and editorial matter, Joanna Niezurawska, Radoslaw Antoni Kycia and Agnieszka Niemczynowicz; individual chapters, the contributors.

2023

Evaluating the Performance of Explanation Methods on Ordinal Regression CNN Models

Authors
Barbero-Gómez, J; Cruz, R; Cardoso, JS; Gutiérrez, PA; Hervás-Martínez, C;

Publication
ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2023, PT II

Abstract
This paper introduces an evaluation procedure to validate the efficacy of explanation methods for Convolutional Neural Network (CNN) models in ordinal regression tasks. Two ordinal methods are contrasted against a baseline using cross-entropy, across four datasets. A statistical analysis demonstrates that attribution methods, such as Grad-CAM and IBA, perform significantly better when used with ordinal regression CNN models compared to a baseline approach in most ordinal and nominal metrics. The study suggests that incorporating ordinal information into the attribution map construction process may improve the explanations further.

  • 633
  • 4389