2023
Authors
Chaves, R; Motta, C; Correia, A; De Souza, J; Schneider, D;
Publication
Proceedings of the 2023 26th International Conference on Computer Supported Cooperative Work in Design, CSCWD 2023
Abstract
2023
Authors
Stolarski, O; Lourenço, JM; Peres, E; Morais, R; Sousa, JJ; Pádua, L;
Publication
CENTERIS 2023 - International Conference on ENTERprise Information Systems / ProjMAN - International Conference on Project MANagement / HCist - International Conference on Health and Social Care Information Systems and Technologies 2023, Porto, Portugal, November 8-10, 2023.
Abstract
Data acquisition through unmanned aerial vehicles (UAVs) has become integral to the study of agricultural crops, especially for multitemporal analyses spanning the entire growing season. Ensuring accurate data alignment is essential not only to maintain data quality but also to leverage the continuous monitoring of the same area over time. Ground control points (GCPs) play a critical role in geolocating UAV data. Their absence can lead to planimetric and altimetric discrepancies, which are particularly impactful in 3D plant-level studies. This study is centered on the examination of misalignment effects in a challenging steep slope vineyard environment and their impacts on 3D alignment accuracy. For this purpose, a UAV equipped with an RGB camera to capture imagery at two distinct flight heights. Various scenarios, each involving a different number of GCPs, were assessed to evaluate their impact on alignment precision. The methodology employed holds potential for assessing geolocation accuracy in complex 3D environments, providing value insights for vineyard monitoring. © 2024 The Author(s). Published by Elsevier B.V.
2023
Authors
Pereira, SC; Rochal, J; Gaudio, A; Smailagic, A; Campilhol, A; Mendonca, AM;
Publication
MEDICAL IMAGING WITH DEEP LEARNING, VOL 227
Abstract
Deep learning-based models are widely used for disease classification in chest radiographs. This exam can be performed in one of two projections (posteroanterior or anteroposterior), depending on the direction that the X-ray beam travels through the body. Since projection visibly affects the way anatomical structures appear in the scans, it may introduce bias in classifiers, especially when spurious correlations between a given disease and a projection occur. This paper examines the influence of chest radiograph projection on the performance of deep learning-based classification models and proposes an approach to mitigate projection-induced bias. Results show that a DenseNet-121 model is better at classifying images from the most representative projection in the data set, suggesting that projection is taken into account by the classifier. Moreover, this model can classify chest X-ray projection better than any of the fourteen radiological findings considered, without being explicitly trained for that task, putting it at high risk for projection bias. We propose a label-conditional gradient reversal framework to make the model insensitive to projection, by forcing the extracted features to be simultaneously good for disease classification and bad for projection classification, resulting in a framework with reduced projection-induced bias.
2023
Authors
Silva, J; Sumaili, J; Silva, B; Carvalho, L; Retorta, F; Staudt, M; Miranda, V;
Publication
IEEE TRANSACTIONS ON POWER SYSTEMS
Abstract
This paper presents a methodology to estimate flexibility existing on TSO-DSO borderline, for the cases where multiple TSO-DSO connections exist (meshed grids). To do so, the work conducted exploits previous developments regarding flexibility representation through the adoption of active and reactive power flexibility maps and extends the concept for the cases where multiple TSO-DSO connection exists, using data-driven approach to determine the equivalent impedance between TSO nodes, preserving the anonymity regarding sensitive grid information, such as the topology. This paper also provides numerical validation followed by real-world demonstration of the methodology proposed.
2023
Authors
Muhammad, SH; Brazdil, P; Jorge, A;
Publication
Compendium of Neurosymbolic Artificial Intelligence
Abstract
Deep learning approaches have become popular in sentiment analysis because of their competitive performance. The downside of this approach is that they do not provide understandable explanations on how the sentiment values are calculated. Previous approaches that used sentiment lexicons for sentiment analysis can do that, but their performance is lower than deep learning approaches. Therefore, it is natural to wonder if the two approaches can be combined to exploit their advantages. In this chapter, we present a neuro-symbolic approach that combines both symbolic and deep learning approaches for sentiment analysis tasks. The symbolic approach exploits sentiment lexicon and shifter patterns-which cover the operations of inversion/reversal, intensification, and attenuation/downtoning. The deep learning approach used a pre-trained language model (PLM) to construct sentiment lexicon. Our experimental result shows that the proposed approach leads to promising results, substantially better than the results of a pure lexicon-based approach. Although the results did not reach the level of the deep learning approach, a great advantage is that sentiment prediction can be accompanied by understandable explanations. For some users, it is very important to see how sentiment is derived, even if performance is a little lower. © 2023 The authors and IOS Press. All rights reserved.
2023
Authors
Pedrosa, J; Silva, R; Santos, C; Nunes, F; Mancio, J; Renna, F; Fontes Carvalho, R;
Publication
European Heart Journal - Cardiovascular Imaging
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.